参考

http://blog.csdn.net/jsond/article/details/72667829

资源

1.相关的vgg模型下载网址

http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat

2.ImageNet 1000种分类以及排列

https://github.com/sh1r0/caffe-Android-demo/blob/master/app/src/main/assets/synset_words.txt(如果下载单个txt格式不对的话就整包下载)

这里以E网络为测试模型VGG19

#coding=utf-8
import numpy as np
import scipy.misc
import scipy.io as sio
import tensorflow as tf
import os ##卷积层
def _conv_layer(input, weight, bias):
conv = tf.nn.conv2d(input, tf.constant(weight), strides=(1, 1, 1, 1), padding='SAME')
return tf.nn.bias_add(conv, bias) ##池化层
def _pool_layer(input):
return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='SAME') ##全链接层
def _fc_layer(input, weights, bias):
shape = input.get_shape().as_list()
dim = 1
for d in shape[1:]:
dim *= d
x = tf.reshape(input, [-1, dim])
fc = tf.nn.bias_add(tf.matmul(x, weights), bias)
return fc ##softmax输出层
def _softmax_preds(input):
preds = tf.nn.softmax(input, name='prediction')
return preds ##图片处里前减去均值
def _preprocess(image, mean_pixel):
return image - mean_pixel ##加均值 显示图片
def _unprocess(image, mean_pixel):
return image + mean_pixel ##读取图片 并压缩
def _get_img(src, img_size=False):
img = scipy.misc.imread(src, mode='RGB')
if not (len(img.shape) == 3 and img.shape[2] == 3):
img = np.dstack((img, img, img))
if img_size != False:
img = scipy.misc.imresize(img, img_size)
return img.astype(np.float32) ##获取名列表
def list_files(in_path):
files = []
for (dirpath, dirnames, filenames) in os.walk(in_path):
# print("dirpath=%s, dirnames=%s, filenames=%s"%(dirpath, dirnames, filenames))
files.extend(filenames)
break return files ##获取文件路径列表dir+filename
def _get_files(img_dir):
files = list_files(img_dir)
return [os.path.join(img_dir, x) for x in files] ##获得图片lable列表
def _get_allClassificationName(file_path):
f = open(file_path, 'r')
lines = f.readlines()
f.close()
return lines ##构建cnn前向传播网络
def net(data, input_image):
layers = (
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2',
'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2',
'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2',
'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4', 'pool5', 'fc6', 'relu6',
'fc7', 'relu7',
'fc8', 'softmax'
) weights = data['layers'][0]
net = {}
current = input_image
for i, name in enumerate(layers):
kind = name[:4]
if kind == 'conv':
kernels, bias = weights[i][0][0][0][0]
kernels = np.transpose(kernels, (1, 0, 2, 3))
bias = bias.reshape(-1)
current = _conv_layer(current, kernels, bias)
elif kind == 'relu':
current = tf.nn.relu(current)
elif kind == 'pool':
current = _pool_layer(current)
elif kind == 'soft':
current = _softmax_preds(current) kind2 = name[:2]
if kind2 == 'fc':
kernels1, bias1 = weights[i][0][0][0][0] kernels1 = kernels1.reshape(-1, kernels1.shape[-1])
bias1 = bias1.reshape(-1)
current = _fc_layer(current, kernels1, bias1) net[name] = current
assert len(net) == len(layers)
return net, mean_pixel, layers if __name__ == '__main__':
imagenet_path = 'imagenet-vgg-verydeep-19.mat'
image_dir = 'images/' data = sio.loadmat(imagenet_path) ##加载ImageNet mat模型
mean = data['normalization'][0][0][0]
mean_pixel = np.mean(mean, axis=(0, 1)) ##获取图片像素均值 lines = _get_allClassificationName('synset_words.txt') ##加载ImageNet mat标签
images = _get_files(image_dir) ##获取图片路径列表
with tf.Session() as sess:
for i, imgPath in enumerate(images):
image = _get_img(imgPath, (224, 224, 3)); ##加载图片并压缩到标准格式=>224 224 image_pre = _preprocess(image, mean_pixel)
# image_pre = image_pre.transpose((2, 0, 1))
image_pre = np.expand_dims(image_pre, axis=0) image_preTensor = tf.convert_to_tensor(image_pre)
image_preTensor = tf.to_float(image_preTensor) # Test pretrained model
nets, mean_pixel, layers = net(data, image_preTensor) preds = nets['softmax'] predsSortIndex = np.argsort(-preds[0].eval())
print('\n#####%s#######' % imgPath)
for i in range(3): ##输出前3种分类
nIndex = predsSortIndex
classificationName = lines[nIndex[i]] ##分类名称
problity = preds[0][nIndex[i]] ##某一类型概率 print('%d.ClassificationName=%s Problity=%f' % ((i + 1), classificationName, problity.eval()))
sess.close()

分类结果

#####images/airplay.jpg#######
1.ClassificationName=n04228054 ski
Problity=0.177715
2.ClassificationName=n04286575 spotlight, spot
Problity=0.108483
3.ClassificationName=n04127249 safety pin
Problity=0.026277 #####images/bird.jpg#######
1.ClassificationName=n01608432 kite
Problity=0.096818
2.ClassificationName=n01833805 hummingbird
Problity=0.072687
3.ClassificationName=n02231487 walking stick, walkingstick, stick insect
Problity=0.069186 #####images/cat1.jpg#######
1.ClassificationName=n02123045 tabby, tabby cat
Problity=0.232015
2.ClassificationName=n02123159 tiger cat
Problity=0.094694
3.ClassificationName=n02124075 Egyptian cat
Problity=0.030673 #####images/cat2.jpg#######
1.ClassificationName=n02123045 tabby, tabby cat
Problity=0.333797
2.ClassificationName=n02123159 tiger cat
Problity=0.164726
3.ClassificationName=n02124075 Egyptian cat
Problity=0.057272 #####images/cat3.jpg#######
1.ClassificationName=n03887697 paper towel
Problity=0.086723
2.ClassificationName=n02111889 Samoyed, Samoyede
Problity=0.055845
3.ClassificationName=n03131574 crib, cot
Problity=0.052640 #####images/dog1.jpg#######
1.ClassificationName=n02096585 Boston bull, Boston terrier
Problity=0.429622
2.ClassificationName=n02108089 boxer
Problity=0.199422
3.ClassificationName=n02093256 Staffordshire bullterrier, Staffordshire bull terrier
Problity=0.093615 #####images/dog2.jpg#######
1.ClassificationName=n02085936 Maltese dog, Maltese terrier, Maltese
Problity=0.172208
2.ClassificationName=n03445777 golf ball
Problity=0.139949
3.ClassificationName=n02259212 leafhopper
Problity=0.118109 #####images/lena.jpg#######
1.ClassificationName=n02869837 bonnet, poke bonnet
Problity=0.130357
2.ClassificationName=n04356056 sunglasses, dark glasses, shades
Problity=0.066170
3.ClassificationName=n04355933 sunglass
Problity=0.043199 #####images/sky.jpg#######
1.ClassificationName=n03733281 maze, labyrinth
Problity=0.711163
2.ClassificationName=n03065424 coil, spiral, volute, whorl, helix
Problity=0.181123
3.ClassificationName=n04259630 sombrero
Problity=0.010005

TensorFlow基础笔记(5) VGGnet_test的更多相关文章

  1. TensorFlow基础笔记(0) 参考资源学习文档

    1 官方文档 https://www.tensorflow.org/api_docs/ 2 极客学院中文文档 http://www.tensorfly.cn/tfdoc/api_docs/python ...

  2. TensorFlow基础笔记(3) cifar10 分类学习

    TensorFlow基础笔记(3) cifar10 分类学习 CIFAR-10 is a common benchmark in machine learning for image recognit ...

  3. TensorFlow基础笔记(15) 编译TensorFlow.so,提供给C++平台调用

    参考 http://blog.csdn.net/rockingdingo/article/details/75452711 https://www.cnblogs.com/hrlnw/p/700764 ...

  4. TensorFlow基础笔记(0) tensorflow的基本数据类型操作

    import numpy as np import tensorflow as tf #build a graph print("build a graph") #生产变量tens ...

  5. TensorFlow基础笔记(14) 网络模型的保存与恢复_mnist数据实例

    http://blog.csdn.net/huachao1001/article/details/78502910 http://blog.csdn.net/u014432647/article/de ...

  6. TensorFlow基础笔记(13) tf.name_scope tf.variable_scope学习

    转载http://blog.csdn.net/jerr__y/article/details/60877873 1. 首先看看比较简单的 tf.name_scope(‘scope_name’). tf ...

  7. TensorFlow基础笔记(13) Mobilenet训练测试mnist数据

    主要是四个文件 mnist_train.py #coding: utf-8 import os import tensorflow as tf from tensorflow.examples.tut ...

  8. TensorFlow基础笔记(11) conv2D函数

    #链接:http://www.jianshu.com/p/a70c1d931395 import tensorflow as tf import tensorflow.contrib.slim as ...

  9. TensorFlow基础笔记(9) Tensorboard可视化显示以及查看pb meta模型文件的方法

    参考: http://blog.csdn.net/l18930738887/article/details/55000008 http://www.jianshu.com/p/19bb60b52dad ...

随机推荐

  1. Codeforces Round #208 E. Dima and Kicks

                                                                           E. Dima and Kicks             ...

  2. xmpp 服务器配置 open fire for windows 及 spark 测试

    xmpp 服务器配置 open fire for windows 此文章为 XMPP windows服务器配置,使用的是 open fire 3.9.1.exe 1: 下载 open fire ope ...

  3. JUnit单元测试基础要点

    JUnit单元测试基础要点 1.JUnit是一种测试代码的框架,测试的目的是:保证代码没错,而不是保证代码正确. 2.测试类一般不要和目标类放在一起,但编译成的class文件是放在一起的. 3.单元测 ...

  4. MySQL 官方文档

    MySQL 5.6 Reference Manual Preface and Legal Notices 1 General Information 2 Installing and Upgradin ...

  5. How to make a custom WIDGET in OpenERP

    转自:http://sahotaparamjitsingh.blogspot.com/2012/04/how-to-make-custom-widget-in-openerp.html   Hello ...

  6. adb--monkey 压力测试工

    android压力测试命令monkey详解 http://www.jb51.net/article/48557.htm 作者: 字体:[增加 减小] 类型:转载 这篇文章主要介绍了android mo ...

  7. android系统特效详解和修改方法

    安卓系统特效相关文件:  存在于:framework-res.apk   反编译后的\framework-res\res\anim文件夹内!anim文件夹下所有的文件都是特效文件原理  反编译fram ...

  8. UniCode 下 CString 转 char* 的方法

    今天进行文件操作时,将CString的GetBuffer()后直接倒到char数组后写入文件发现 每个字符与字符之间都有一个空格存在,而且有内容丢失.原来CString类对象GetBuffer(),后 ...

  9. ItelliJ基于Gradle创建及发布Web项目(一)

    背景:安装IntelliJ,去官网下载. 创建WEB项目 1. File->New Project,在弹出的选项框中勾选Web,如下图. IntelliJ默认使用Gradle,感谢Gradle. ...

  10. 使用while循环和伪列的存储过程

    使用while循环和伪列的存储过程如下: USE [JointFrame2] GO /****** Object: StoredProcedure [dbo].[Proc_enterprise_uni ...