Codeforces 480.E Parking Lot
3 seconds
256 megabytes
standard input
standard output
Petya's been bored at work and he is killing the time by watching the parking lot at the office. The parking lot looks from above like an n × m table (a cell of the table corresponds to a single parking spot). Some spots in the parking lot are taken, others are empty.
Petya watches cars riding into the parking lot one by one. After a car settles down at the parking spot, Petya amuzes himself by counting what maximum square of empty spots (i.e. a square subtable) can be seen on the parking lot if we look at it from above. Also, he takes notes of the square's size (side length) in his notebook.
You task is: given the state of the parking lot at the initial moment of time and the information about where the arriving cars park, restore what Petya wrote in his notebook. It is midday, so nobody leaves the lot.
The first line contains three integers n, m and k — the sizes of the parking lot and the number of arriving cars after Petya started his watch (1 ≤ n, m, k ≤ 2000). Each of the following n lines contains m characters 'X' and '.', where 'X' means a taken spot and '.' means an empty spot. Each of the next k lines contains a pair of integers xi, yi — the number of row and column of the spot the corresponding car takes (1 ≤ xi ≤ n, 1 ≤ yi ≤ m). It is guaranteed that this place was empty. You can assume that a car enters a parking lot only after the previous car successfully finds a spot.
Print k integers — the length of the side of the maximum square of empty spots after the corresponding car has entered the parking lot.
7 8 4
........
X.....X.
........
........
.X......
........
........
1 5
6 4
3 5
4 6
5
4
4
3
大致题意:k次操作,每次删掉一个点,删掉后问最大的不含'X'的正方形边长是多少.
分析:一道挺好的题,get了许多技巧.
首先,题目允许离线,并且是每次删点后询问,删点后求答案比较麻烦,可以考虑时间倒流,从后往前添加点进去.类似于bzoj上一道删点求连通块数目的题. 初始化出删掉所有的k个点以后的最大正方形的边长,这个可以用dp来算.接着维护两个数组:up[i][j]和down[i][j].表示(i,j)这个点分别能往上和往下扩展多少位.这些是预处理操作.
因为每次都往里面添加点,所以答案肯定是递增的,而答案不超过2000,所以可以while判断当前答案ans + 1后行不行,直到退出while循环,当前的ans就是答案.比添加这个点之前更大的矩形肯定包含添加进去的这个点.当判断边长为len的正方形行不行时.将所有包含当前点的正方形给枚举出来,看在这个边上的点向上扩展和向下扩展的最小值分别是多少,如果加起来-1正好 ≥ len,则可行,否则不可行.涉及到区间查询操作,可以用线段树搞一搞.对于每次添加的点,只需要在那一列改一下up和down数组,并在那一行维护一下答案就可以了.
犯了一个错误:m写成了n.在写题的时候一般都用n而不用m,碰到这种m用的多的情况可以考虑把m,n互换.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int inf = 0x3f3f3f3f; int n,m,k,a[][],up[][],down[][],ans[],res,f[][];
int min1[ << ],min2[ << ],min11,min22;
char s[][]; struct node
{
int x,y;
}e[]; void init()
{
for (int i = ; i <= n; i++)
for (int j = ; j <= m; j++)
{
if (a[i][j] == )
up[i][j] = up[i - ][j] + ;
else
up[i][j] = ;
}
for (int i = n; i >= ; i--)
for (int j = ; j <= m; j++)
{
if (a[i][j] == )
down[i][j] = down[i + ][j] + ;
else
down[i][j] = ;
}
} void jisuan()
{
for (int i = ; i <= n; i++)
for (int j = ; j <= m; j++)
{
if (a[i][j] == )
continue;
f[i][j] = min(f[i-][j],min(f[i][j - ],f[i-][j-])) + ;
res = max(res,f[i][j]);
}
} void pushup(int o)
{
min1[o] = min(min1[o * ],min1[o * + ]);
min2[o] = min(min2[o * ],min2[o * + ]);
} void build(int cur,int o,int l,int r)
{
if (l == r)
{
min1[o] = up[cur][l];
min2[o] = down[cur][l];
return;
}
int mid = (l + r) >> ;
build(cur,o * ,l,mid);
build(cur,o * + ,mid + ,r);
pushup(o);
} int query1(int o,int l,int r,int x,int y)
{
if (x <= l && r <= y)
return min1[o];
int mid = (l + r) >> ,temp = inf;
if (x <= mid)
temp = min(temp,query1(o * ,l,mid,x,y));
if (y > mid)
temp = min(temp,query1(o * + ,mid + ,r,x,y));
return temp;
} int query2(int o,int l,int r,int x,int y)
{
if (x <= l && r <= y)
return min2[o];
int mid = (l + r) >> ,temp = inf;
if (x <= mid)
temp = min(temp,query2(o * ,l,mid,x,y));
if (y > mid)
temp = min(temp,query2(o * + ,mid + ,r,x,y));
return temp;
} bool check(int len,int y)
{
if (len > n || len > m)
return false;
for (int i = max(,y - len + ); i <= m - len + ; i++)
{
int temp1 = query1(,,m,i,i + len - );
int temp2 = query2(,,m,i,i + len - );
if (temp1 + temp2 - >= len)
return true;
}
return false;
} void solve()
{
jisuan();
for (int i = k; i >= ; i--)
{
//printf("%d\n",i);
ans[i] = res;
if (i == )
break;
int x = e[i].x,y = e[i].y;
a[x][y] = ;
up[x][y] = up[x - ][y] + ;
for (int j = x + ; j <= n; j++)
{
if (a[j][y] == )
break;
up[j][y] += up[x][y];
}
down[x][y] = down[x + ][y] + ;
for (int j = x - ; j >= ; j--)
{
if (a[j][y] == )
break;
down[j][y] += down[x][y];
}
build(x,,,m);
while (check(res + ,y))
res++;
}
} int main()
{
scanf("%d%d%d",&n,&m,&k);
for (int i = ; i <= n; i++)
{
scanf("%s",s[i] + );
for (int j = ; j <= m; j++)
{
if (s[i][j] == '.')
a[i][j] = ;
else
a[i][j] = ;
}
}
for (int i = ; i <= k; i++)
{
scanf("%d%d",&e[i].x,&e[i].y);
a[e[i].x][e[i].y] = ;
}
init();
solve();
for (int i = ; i <= k; i++)
printf("%d\n",ans[i]); return ;
}
Codeforces 480.E Parking Lot的更多相关文章
- CF 480 E. Parking Lot
CF 480 E. Parking Lot http://codeforces.com/contest/480/problem/E 题意: 给一个n*m的01矩阵,每次可以将一个0修改为1,求最大全0 ...
- #2 codeforces 480 Parcels
题意: 就是有一个用来堆放货物的板,承重力为S.现在有N件货物,每件货物有到达的时间,运走的时间,以及重量,承重,存放盈利.如果这件货物能再运达时间存放,并在指定时间取走的话,就能获得相应的盈利值.货 ...
- Codeforces #480 Tutorial
Problem A,B,C: 简单的模拟,注意A中p mod q时对q=0特殊处理(注意范围) Problem D: Brief Intro: 给定长度为N的数组A,将A中所有连续子序列分成最少的组, ...
- Mistakes(Updating)
1.当调试时发现无法正常调用函数时,检查是否发生爆栈 对于每个栈仅有4MB的空间,开int只能开大约5*10^5. 大数组一定要开全局变量 2.当long long=int*int时会爆int,一定要 ...
- [Atcoder Grand Contest 003] Tutorial
Link: AGC003 传送门 A: 判断如果一个方向有,其相反方向有没有即可 #include <bits/stdc++.h> using namespace std; ]; map& ...
- ●CodeForces 480E Parking Lot
题链: http://codeforces.com/problemset/problem/480/E题解: 单调队列,逆向思维 (在线的话应该是分治做,但是好麻烦..) 离线操作,逆向考虑, 最后的状 ...
- Codeforces 46D Parking Lot
传送门 D. Parking Lot time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #135 (Div. 2) E. Parking Lot 线段数区间合并
E. Parking Lot time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- Codeforces 219E Parking Lot 线段树
Parking Lot 线段树区间合并一下, 求当前要占的位置, 不包括两端点的写起来方便一点. #include<bits/stdc++.h> #define LL long long ...
随机推荐
- 1.6 JAVA高并发之线程池
一.JAVA高级并发 1.5JDK之后引入高级并发特性,大多数的特性在java.util.concurrent 包中,是专门用于多线程发编程的,充分利用了现代多处理器和多核心系统的功能以编写大规模并发 ...
- 堆中的路径(MOOC)
将一系列给定数字插入一个初始为空的小顶堆H[].随后对任意给定的下标i,打印从H[i]到根结点的路径. 输入格式: 每组测试第1行包含2个正整数N和M(≤),分别是插入元素的个数.以及需要打印的路径条 ...
- Oracle和MySQL在使用上的区别
1. Oracle是大型数据库而MySQL是中小型数据库,MySQL是开源的而Oracle的价格非常高. 2. Oracle支持大并发,大访问量. 3. 安装所用的空间差别也是很大,MySQL安 ...
- 简单在kubernetes中安装cadvisor
cadvisor用于分析docker资源占用情况及性能的工具 安装命令: docker run --volume=/:/rootfs:ro --volume=/: --detach=true --na ...
- JAVA学习笔记--策略设计模式与适配器模式
一.策略设计模式 创建一个能够根据所传递对象的不同而具有不同行为的方法被称为策略设计模式:这类方法包含所要执行的算法中固定不变的部分,而“策略”包含变化的部分.策略就是传递进去的参数对象,它包含要执行 ...
- RedHat yum源配置
RedHat yum源配置 原本以为Redhat7 和Centos7是完全一样的,可是安装完Redhat7以后,使用yum安装软件,提示红帽操作系统未注册.在网上搜索教程,最后成功解决,解决方式是将y ...
- linux下搭建python机器学习环境
前言 在 linux 下搭建 python 机器学习环境还是比较容易的,考虑到包依赖的问题,最好建立一个虚拟环境作为机器学习工作环境,在建立的虚拟环境中,再安装各种需要的包,主要有以下6个(这是看这个 ...
- Wacom将在CES 2015上发布全新旗舰版Cintiq
Cintiq 27QHD和Cintiq 27QHD touch拥有宽大的工作表面,以及令人惊喜的屏幕笔触和颜色性能. 2015年1月6日,Wacom发布了Cintiq 27QHD和Cintiq 27Q ...
- PHPDoc 学习记录
https://zh.wikipedia.org/wiki/PHPDoc PHPDoc 是一个 PHP 版的 Javadoc.它是一种注释 PHP 代码的正式标准.它支持通过类似 phpDocumen ...
- 复利计算器4.0之再遇JUnit
复利计算器4.0之再遇JUnit 前言 虽然之前的复利计算器版本已经尝试过使用JUnit单元测试,但由于没有系统性地学习过JUnit的使用,用得并不好,主要问题表现在测试的场景太少,并没有达到测 ...