E. Parking Lot
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Petya's been bored at work and he is killing the time by watching the parking lot at the office. The parking lot looks from above like an n × m table (a cell of the table corresponds to a single parking spot). Some spots in the parking lot are taken, others are empty.

Petya watches cars riding into the parking lot one by one. After a car settles down at the parking spot, Petya amuzes himself by counting what maximum square of empty spots (i.e. a square subtable) can be seen on the parking lot if we look at it from above. Also, he takes notes of the square's size (side length) in his notebook.

You task is: given the state of the parking lot at the initial moment of time and the information about where the arriving cars park, restore what Petya wrote in his notebook. It is midday, so nobody leaves the lot.

Input

The first line contains three integers nm and k — the sizes of the parking lot and the number of arriving cars after Petya started his watch (1 ≤ n, m, k ≤ 2000). Each of the following n lines contains m characters 'X' and '.', where 'X' means a taken spot and '.' means an empty spot. Each of the next k lines contains a pair of integers xiyi — the number of row and column of the spot the corresponding car takes (1 ≤ xi ≤ n, 1 ≤ yi ≤ m). It is guaranteed that this place was empty. You can assume that a car enters a parking lot only after the previous car successfully finds a spot.

Output

Print k integers — the length of the side of the maximum square of empty spots after the corresponding car has entered the parking lot.

Examples
input
7 8 4
........
X.....X.
........
........
.X......
........
........
1 5
6 4
3 5
4 6
output
5
4
4
3

大致题意:k次操作,每次删掉一个点,删掉后问最大的不含'X'的正方形边长是多少.

分析:一道挺好的题,get了许多技巧.

首先,题目允许离线,并且是每次删点后询问,删点后求答案比较麻烦,可以考虑时间倒流,从后往前添加点进去.类似于bzoj上一道删点求连通块数目的题. 初始化出删掉所有的k个点以后的最大正方形的边长,这个可以用dp来算.接着维护两个数组:up[i][j]和down[i][j].表示(i,j)这个点分别能往上和往下扩展多少位.这些是预处理操作.

因为每次都往里面添加点,所以答案肯定是递增的,而答案不超过2000,所以可以while判断当前答案ans + 1后行不行,直到退出while循环,当前的ans就是答案.比添加这个点之前更大的矩形肯定包含添加进去的这个点.当判断边长为len的正方形行不行时.将所有包含当前点的正方形给枚举出来,看在这个边上的点向上扩展和向下扩展的最小值分别是多少,如果加起来-1正好 ≥ len,则可行,否则不可行.涉及到区间查询操作,可以用线段树搞一搞.对于每次添加的点,只需要在那一列改一下up和down数组,并在那一行维护一下答案就可以了.

犯了一个错误:m写成了n.在写题的时候一般都用n而不用m,碰到这种m用的多的情况可以考虑把m,n互换.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int inf = 0x3f3f3f3f; int n,m,k,a[][],up[][],down[][],ans[],res,f[][];
int min1[ << ],min2[ << ],min11,min22;
char s[][]; struct node
{
int x,y;
}e[]; void init()
{
for (int i = ; i <= n; i++)
for (int j = ; j <= m; j++)
{
if (a[i][j] == )
up[i][j] = up[i - ][j] + ;
else
up[i][j] = ;
}
for (int i = n; i >= ; i--)
for (int j = ; j <= m; j++)
{
if (a[i][j] == )
down[i][j] = down[i + ][j] + ;
else
down[i][j] = ;
}
} void jisuan()
{
for (int i = ; i <= n; i++)
for (int j = ; j <= m; j++)
{
if (a[i][j] == )
continue;
f[i][j] = min(f[i-][j],min(f[i][j - ],f[i-][j-])) + ;
res = max(res,f[i][j]);
}
} void pushup(int o)
{
min1[o] = min(min1[o * ],min1[o * + ]);
min2[o] = min(min2[o * ],min2[o * + ]);
} void build(int cur,int o,int l,int r)
{
if (l == r)
{
min1[o] = up[cur][l];
min2[o] = down[cur][l];
return;
}
int mid = (l + r) >> ;
build(cur,o * ,l,mid);
build(cur,o * + ,mid + ,r);
pushup(o);
} int query1(int o,int l,int r,int x,int y)
{
if (x <= l && r <= y)
return min1[o];
int mid = (l + r) >> ,temp = inf;
if (x <= mid)
temp = min(temp,query1(o * ,l,mid,x,y));
if (y > mid)
temp = min(temp,query1(o * + ,mid + ,r,x,y));
return temp;
} int query2(int o,int l,int r,int x,int y)
{
if (x <= l && r <= y)
return min2[o];
int mid = (l + r) >> ,temp = inf;
if (x <= mid)
temp = min(temp,query2(o * ,l,mid,x,y));
if (y > mid)
temp = min(temp,query2(o * + ,mid + ,r,x,y));
return temp;
} bool check(int len,int y)
{
if (len > n || len > m)
return false;
for (int i = max(,y - len + ); i <= m - len + ; i++)
{
int temp1 = query1(,,m,i,i + len - );
int temp2 = query2(,,m,i,i + len - );
if (temp1 + temp2 - >= len)
return true;
}
return false;
} void solve()
{
jisuan();
for (int i = k; i >= ; i--)
{
//printf("%d\n",i);
ans[i] = res;
if (i == )
break;
int x = e[i].x,y = e[i].y;
a[x][y] = ;
up[x][y] = up[x - ][y] + ;
for (int j = x + ; j <= n; j++)
{
if (a[j][y] == )
break;
up[j][y] += up[x][y];
}
down[x][y] = down[x + ][y] + ;
for (int j = x - ; j >= ; j--)
{
if (a[j][y] == )
break;
down[j][y] += down[x][y];
}
build(x,,,m);
while (check(res + ,y))
res++;
}
} int main()
{
scanf("%d%d%d",&n,&m,&k);
for (int i = ; i <= n; i++)
{
scanf("%s",s[i] + );
for (int j = ; j <= m; j++)
{
if (s[i][j] == '.')
a[i][j] = ;
else
a[i][j] = ;
}
}
for (int i = ; i <= k; i++)
{
scanf("%d%d",&e[i].x,&e[i].y);
a[e[i].x][e[i].y] = ;
}
init();
solve();
for (int i = ; i <= k; i++)
printf("%d\n",ans[i]); return ;
}

Codeforces 480.E Parking Lot的更多相关文章

  1. CF 480 E. Parking Lot

    CF 480 E. Parking Lot http://codeforces.com/contest/480/problem/E 题意: 给一个n*m的01矩阵,每次可以将一个0修改为1,求最大全0 ...

  2. #2 codeforces 480 Parcels

    题意: 就是有一个用来堆放货物的板,承重力为S.现在有N件货物,每件货物有到达的时间,运走的时间,以及重量,承重,存放盈利.如果这件货物能再运达时间存放,并在指定时间取走的话,就能获得相应的盈利值.货 ...

  3. Codeforces #480 Tutorial

    Problem A,B,C: 简单的模拟,注意A中p mod q时对q=0特殊处理(注意范围) Problem D: Brief Intro: 给定长度为N的数组A,将A中所有连续子序列分成最少的组, ...

  4. Mistakes(Updating)

    1.当调试时发现无法正常调用函数时,检查是否发生爆栈 对于每个栈仅有4MB的空间,开int只能开大约5*10^5. 大数组一定要开全局变量 2.当long long=int*int时会爆int,一定要 ...

  5. [Atcoder Grand Contest 003] Tutorial

    Link: AGC003 传送门 A: 判断如果一个方向有,其相反方向有没有即可 #include <bits/stdc++.h> using namespace std; ]; map& ...

  6. ●CodeForces 480E Parking Lot

    题链: http://codeforces.com/problemset/problem/480/E题解: 单调队列,逆向思维 (在线的话应该是分治做,但是好麻烦..) 离线操作,逆向考虑, 最后的状 ...

  7. Codeforces 46D Parking Lot

    传送门 D. Parking Lot time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  8. Codeforces Round #135 (Div. 2) E. Parking Lot 线段数区间合并

    E. Parking Lot time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  9. Codeforces 219E Parking Lot 线段树

    Parking Lot 线段树区间合并一下, 求当前要占的位置, 不包括两端点的写起来方便一点. #include<bits/stdc++.h> #define LL long long ...

随机推荐

  1. Nginx快速入门

    本文主要介绍nginx的基本配置和操作,并介绍了一些可以完成的简单任务. 假设您已经学习过并已经安装好了nginx服务器. 如果没有,请参阅安装nginx页面(http://www.yiibai.co ...

  2. gopherjs

    An example implementation of a GopherJS client and a Go server using the Improbable gRPC-Web impleme ...

  3. 笔试题——C++字符排序

    题目:字符排序 题目介绍:输入一组以空格隔开的字数串,将它们奇数位升序排序,偶数位降序排序,再重新输出成新的字数串. 例: 输入: 4 6 2 3 6 7 8 1 奇数位:4 2 6 8 ——2 4 ...

  4. 团队项目选题报告(I know)

    一.团队成员及分工 团队名称:I know 团队成员: 陈家权:选题报告word撰写 赖晓连:ppt制作,原型设计 雷晶:ppt制作,原型设计 林巧娜:原型设计,博客随笔撰写 庄加鑫:选题报告word ...

  5. HDU 5286 How far away ? lca

    题目链接: 题目 How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...

  6. slf4j与logback的结合使用

    参考:http://my.oschina.net/ydsakyclguozi/blog/412240 一.logback的介绍 Logback是由log4j创始人设计的又一个开源日志组件.logbac ...

  7. UML之Enterprise Architect使用

    版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:UML之Enterprise Architect使用     本文地址:http://tech ...

  8. UEditor前端配置项说明

    UEditor 的配置项分为两类:前端配置项 和 后端配置项 后端配置项具体看这个文档L:后端配置项说明 本文档介绍如何通过设置前端配置项,定制编辑器的特性,配置方法主要通过修改ueditor.con ...

  9. Matlab里面.M文件不能运行,预期的图像也显示不出来的一个原因

    matlab中function函数的函数名与保存的文件名需要一样: 函数名是GAconstrain,文件名保存成GAconstrain.m,不要使用复制时候产生副本GAconstrain(1).m.

  10. web三大组件的加载顺序

    Web三大组件:过滤器组件  监听器组件  Servlet组件 过滤器的顶级接口:javax.servlet.Filter 监听器的顶级接口:javax.servlet.ServletContextL ...