设a和b的最大公约数是d,那么:

1. d是用sa+tb(s和t都是整数)能够表示的最小正整数

  证明:设x=sa+tb是sa+tb能够表示出的最小正整数。首先,有d|x,证明如下:

    因此有x>=d,现在只要证明x是公约数,就可以证明x就是这个最大公约数了。只需证明x|a且x|b。

    先证x|a。设a=qx+r(q是自然数,0<=r<x),那么r=a-qx=a-q(sa+tb)=(1-qs)a+(-qt)b。可以看出r也满足Sa+Tb这种形式,假如r也是正整数的话,r<x,那么与x是Sa+Tb这种形式的最小正整数矛盾。因此假设不成立,r不是正整数。所以r=0。所以有x|a。

    证x|b同理。

  所以命题得证。有结论:存在整数s,t使得sa+tb=d,其中d=gcd(a,b)。并且d是形如sa+tb的所有正整数里最小的。

2. c是a和b的公约数,那么c|d

  证明:由命题1,存在整数s,t,使得sa+tb=d。由于a=pc,b=qc(p,q都是正整数),所以d=spc+tqc=(sp+tq)c。所以c|d。

  所以命题得证。有结论:任何公约数都整除最大公约数。

3. 如果c|d,那么有c|a且c|b

  证明:显然有d|a且d|b。由整除的传递性,就有c|a且c|b。

  由命题2和命题3得出推论:一个数整除最大公约数,跟这个数分别整除这两个数是等价的条件。

  这是今天在看莫比乌斯反演的时候有一步转化没有看懂,就在这里推了一下。

  

关于GCD的几个结论的更多相关文章

  1. 清北澡堂 Day2 下午 一些比较重要的数论知识整理

    1.欧拉定理 设x1,x2,.....,xk,k=φ(n)为1~n中k个与n互质的数 结论一:axi与axj不同余 结论二:gcd(axi,n)=1 结论三:x1,x2,...,xk和ax1,ax2, ...

  2. 清北学堂Day2

    算数基本定理: 1.整数及其相关 2.唯一分解定理 对于任意的大于1的正整数N,N一定能够分解成有限个质数的乘积,即 其中P1<P2<...<Pk,a1,a2,...,ak>= ...

  3. POJ2480:Longge's problem(欧拉函数的应用)

    题目链接:传送门 题目需求: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N ...

  4. [日常训练]AekdyCoin的跳棋

    Description $AekdyCoin$正在玩一个游戏,该游戏要用到两副牌和一个数轴和一个棋子. 刚开始的时候棋子位于数轴的$0$位置.然后$AekdyCoin$交替的从两副牌中抽取一张牌,然后 ...

  5. [hiho1584]Bounce

    题意:找出图中经过一次的格子个数. 解题关键: 组合数学的思想:先找出总的经过格子的次数,然后减去2倍的经过2次的格子个数. 1.总的求法:将长延展,当延展到n倍时,能够恰好到达右边的两个端点,则总格 ...

  6. 有关Gcd,Lcm的一点小结论

    先介绍两个: 大数的Gcd Stein+欧几里德 function stein(a,b:int64):int64; begin if a<b then exit(stein(b,a)); the ...

  7. luogu 3166 组合与gcd(数三角形)结论

    在n*m的点格图中选取三个点满足三角形的个数 结论:点(x1,y1)和(x2,y2) 中间有gcd(x2-x1,y2-y1)+1个和两点连成的线段直线共线 那么大力枚举 x2-x1和y2-y1,然后发 ...

  8. 【20181027T1】洛阳怀【推结论+线性筛+分解质因数+GCD性质】

    原题:CF402D [错解] 唔,先打个表看看 咦,没有坏质数好像就是质因数个数啊 那有坏质数呢? 好像变负数了 推出错误结论:f(x)=x的质因数个数,如果有个坏质数,就乘上-1 然后乱搞,起码花了 ...

  9. 【bzoj2005】 [Noi2010]能量采集 数学结论(gcd)

    [bzoj2005] [Noi2010]能量采集 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

随机推荐

  1. mtv网站架构模式适合企业网站应用吗?

    mtv网站架构模式适合企业网站应用吗?有时候在思考这样一个问题. 从开发角度来说,本来mvc的进度慢了些,如果在数据库管理方面用sql的话,管理起来也不很方便.小企业网本来数据就不很多,也没什么太多安 ...

  2. 王者荣耀交流协会第二次Scrum立会

    会议时间:2017年10月21号   17:00-17:22,时长22分钟. 会议地点:首尔名家里面的大桌子(PS:感谢组长大大请我们吃饭~)立会内容:每位同学汇报了今日工作(高远博与王超同学在今日有 ...

  3. Alpha发布_文案+美工

    团队名称:探路者 1蔺依铭:http://www.cnblogs.com/linym762/ 2张恩聚:http://www.cnblogs.com/zej87/ 3米赫:http://www.cnb ...

  4. MySQL 忘记root密码怎么办

    前言:记住如果忘记root密码,在启动MySQL的时候,跳过查询授权表就ok了. 对于RedHat 6 而言 (1)启动mysqld 进程时,为其使用:--skip-grant-tables --sk ...

  5. 201621123037 《Java程序设计》第12周学习总结

    作业12-流与文件 标签(空格分隔): Java 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 答: 读取操作 从文件中读取: 1.字节流 InputStr ...

  6. web移动端

    h5:低版本(IE8及以下不支持H5标签,要引入html5shiv.js才能正常运行) 条件引入,只是针对PC端,移动端不存在这样的操作 <figure>:专门用来存放图片和相关介绍的 & ...

  7. PAT 甲级 1054 The Dominant Color

    https://pintia.cn/problem-sets/994805342720868352/problems/994805422639136768 Behind the scenes in t ...

  8. so加载报错:dlopen failed: couldn't map ... Permission denied

    转自:https://blog.csdn.net/u013270444/article/details/60869376 问题描述: 我的应用当中集成了一个安全相关的sdk,而这个sdk中使用的so是 ...

  9. Java ISO 8601时间格式转换

    common-lang包: String pattern = "YYYY-MM-dd'T'HH:mm:ssZZ"; System.out.println(DateFormatUti ...

  10. MVC、MVP、MVVM 模式

    一.前言 做客户端开发.前端开发对MVC.MVP.MVVM这些名词不了解也应该大致听过,都是为了解决图形界面应用程序复杂性管理问题而产生的应用架构模式.网上很多文章关于这方面的讨论比较杂乱,各种MV* ...