设a和b的最大公约数是d,那么:

1. d是用sa+tb(s和t都是整数)能够表示的最小正整数

  证明:设x=sa+tb是sa+tb能够表示出的最小正整数。首先,有d|x,证明如下:

    因此有x>=d,现在只要证明x是公约数,就可以证明x就是这个最大公约数了。只需证明x|a且x|b。

    先证x|a。设a=qx+r(q是自然数,0<=r<x),那么r=a-qx=a-q(sa+tb)=(1-qs)a+(-qt)b。可以看出r也满足Sa+Tb这种形式,假如r也是正整数的话,r<x,那么与x是Sa+Tb这种形式的最小正整数矛盾。因此假设不成立,r不是正整数。所以r=0。所以有x|a。

    证x|b同理。

  所以命题得证。有结论:存在整数s,t使得sa+tb=d,其中d=gcd(a,b)。并且d是形如sa+tb的所有正整数里最小的。

2. c是a和b的公约数,那么c|d

  证明:由命题1,存在整数s,t,使得sa+tb=d。由于a=pc,b=qc(p,q都是正整数),所以d=spc+tqc=(sp+tq)c。所以c|d。

  所以命题得证。有结论:任何公约数都整除最大公约数。

3. 如果c|d,那么有c|a且c|b

  证明:显然有d|a且d|b。由整除的传递性,就有c|a且c|b。

  由命题2和命题3得出推论:一个数整除最大公约数,跟这个数分别整除这两个数是等价的条件。

  这是今天在看莫比乌斯反演的时候有一步转化没有看懂,就在这里推了一下。

  

关于GCD的几个结论的更多相关文章

  1. 清北澡堂 Day2 下午 一些比较重要的数论知识整理

    1.欧拉定理 设x1,x2,.....,xk,k=φ(n)为1~n中k个与n互质的数 结论一:axi与axj不同余 结论二:gcd(axi,n)=1 结论三:x1,x2,...,xk和ax1,ax2, ...

  2. 清北学堂Day2

    算数基本定理: 1.整数及其相关 2.唯一分解定理 对于任意的大于1的正整数N,N一定能够分解成有限个质数的乘积,即 其中P1<P2<...<Pk,a1,a2,...,ak>= ...

  3. POJ2480:Longge's problem(欧拉函数的应用)

    题目链接:传送门 题目需求: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N ...

  4. [日常训练]AekdyCoin的跳棋

    Description $AekdyCoin$正在玩一个游戏,该游戏要用到两副牌和一个数轴和一个棋子. 刚开始的时候棋子位于数轴的$0$位置.然后$AekdyCoin$交替的从两副牌中抽取一张牌,然后 ...

  5. [hiho1584]Bounce

    题意:找出图中经过一次的格子个数. 解题关键: 组合数学的思想:先找出总的经过格子的次数,然后减去2倍的经过2次的格子个数. 1.总的求法:将长延展,当延展到n倍时,能够恰好到达右边的两个端点,则总格 ...

  6. 有关Gcd,Lcm的一点小结论

    先介绍两个: 大数的Gcd Stein+欧几里德 function stein(a,b:int64):int64; begin if a<b then exit(stein(b,a)); the ...

  7. luogu 3166 组合与gcd(数三角形)结论

    在n*m的点格图中选取三个点满足三角形的个数 结论:点(x1,y1)和(x2,y2) 中间有gcd(x2-x1,y2-y1)+1个和两点连成的线段直线共线 那么大力枚举 x2-x1和y2-y1,然后发 ...

  8. 【20181027T1】洛阳怀【推结论+线性筛+分解质因数+GCD性质】

    原题:CF402D [错解] 唔,先打个表看看 咦,没有坏质数好像就是质因数个数啊 那有坏质数呢? 好像变负数了 推出错误结论:f(x)=x的质因数个数,如果有个坏质数,就乘上-1 然后乱搞,起码花了 ...

  9. 【bzoj2005】 [Noi2010]能量采集 数学结论(gcd)

    [bzoj2005] [Noi2010]能量采集 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

随机推荐

  1. 【shell 每日一练7】一键安装mysql5.7,以及密码及策略修改

    一.一键安装Mysql脚本 [root@uat01 ~]# cat InstallMysql01.sh #!/bin/bash #-- #旅行者-Travel #.安装wget yum -y inst ...

  2. Mysql 表创建语句

    # 新建bigData数据库 CREATE DATABASE bigData; USE bigData; # 创建dept表 CREATE TABLE dept( id INT UNSIGNED PR ...

  3. Amazon Headlines Update on Activity in US West Coast Ports

    According to news reports, freighter cargo may not be offloaded at U.S. West Coast ports from Februa ...

  4. Appstate的几种状态及在android 和ios触发

    AppState能告诉你当前应用是在前台还是在后台,或者处于切换应用的状态,并且能在状态变化的时候通知你. AppState 通常在处理推送通知的时候用来决定内容和对应的行为 一: App State ...

  5. 《数据结构与算法JavaScript描述》中的一处错误

    最近在看<数据结构与算法JavaScript描述>这本书,看到选择排序这部分时,发现一个比较大的错误. 原书的选择排序算法是这样的: function selectionSort() { ...

  6. PSP表格记录功能

    关于王者荣耀交流协会的PSP表格记录功能,就是针对我们平时做表格时候遇到问题的简化与解决.这部分功能可以记录我们开始时间,暂停时间,结束时间,并自动计算出各个时间段的净时间.只要你开始工作时点一下开始 ...

  7. NumPy常用函数总结

    转载:https://www.cnblogs.com/hd-chenwei/p/6832732.html NumPy库总包含两种基本的数据类型:矩阵和数组,矩阵的使用类似Matlab,本实例用得多的是 ...

  8. 《我是一只IT小小鸟》心得

    虽然读这本书是老师布置的作业,但是读了几页后就被书中的内容所吸引住了.或许是因为我也是学这个专业的,所以书中的一些内容让我觉得非常的有兴趣.作为一个学习软件工程的大一学生还没真正的认识到这个专业的深奥 ...

  9. Java JVM多线程

  10. 【beta】Scrum站立会议第4次....11.6

    小组名称:nice! 组长:李权 成员:于淼  刘芳芳韩媛媛 宫丽君 项目内容:约跑app(约吧) 时间:  12:00——12:30 地点:传媒西楼220室 本次对beta阶段的需求进行更新如下: ...