json&pickle序列化
一、用途
我们需要将内存中的数据进行序列化,即写入文件中时,写入的类型只能是字符串或者二进制类型。但是如果我们想要将复杂一些的数据类型,如:列表、字典或者函数之类的同样进行序列化,我们就要用到 json或者pickle。
二、json序列化
1、dumps序列化和loads反序列化
dumps把数据类型转换成字符串
import json
info = {
'name': 'The Count of Monte Cristo',
'type': 'Movie'
}
data = json.dumps(info)
print(data)
print(type(data))
# 输出
{"name": "The Count of Monte Cristo", "type": "Movie"}
<class 'str'>
loads把字符串转换成数据类型
import json get_info = json.loads(data)
print(get_info['name'])
print(get_info)
print(type(get_info)) #输出
The Count of Monte Cristo
{'name': 'The Count of Monte Cristo', 'type': 'Movie'}
<class 'dict'>
2.dump序列化和load反序列化
dump把数据类型转换成字符串并存储在文件中
import json
info = {
'name': 'The Count of Monte Cristo',
'type': 'Movie'
}
with open("test.txt", "w", encoding="utf-8") as f:
json.dump(info, f) # 第一个参数是内存中的数据对象,第二个参数是文件句柄
#写入文件中的内容
{"name": "The Count of Monte Cristo", "type": "Movie"}
load把文件打开从字符串转换成数据类型
import json
with open("test.txt", "r", encoding="utf-8") as f:
data_from_file = json.load(f)
print(data_from_file['name'])
print(data_from_file)
print(type(data_from_file))
#输出
The Count of Monte Cristo
{'name': 'The Count of Monte Cristo', 'type': 'Movie'}
<class 'dict'>
3.json序列化一个函数
import json def test(name):
print("hello,{}".format(name)) info = {
'name': 'The Count of Monte Cristo',
'type': 'Movie',
'func': test
} data = json.dumps(info) #输出
File "G:/python/untitled/study6/json&pickle模块.py", line 22, in <module>
data = json.dumps(info)
File "G:\python\install\lib\json\__init__.py", line 230, in dumps
return _default_encoder.encode(obj)
File "G:\python\install\lib\json\encoder.py", line 198, in encode
chunks = self.iterencode(o, _one_shot=True)
File "G:\python\install\lib\json\encoder.py", line 256, in iterencode
return _iterencode(o, 0)
File "G:\python\install\lib\json\encoder.py", line 179, in default
raise TypeError(repr(o) + " is not JSON serializable")
TypeError: <function test at 0x0000021B13C57F28> is not JSON serializable
1、json只能处理简单的数据类型,例如:字典、列表、字符串等,不能处理函数等复杂的数据类型。
2、json是所有语言通用的,所有语言都支持json,如果我们需要python跟其他语言进行数据交互,那么就用json格式
三、pickle序列化
pickle的用法和上面的相同,但是pickle序列化后的数据类型是二进制的,并且pickle只能在python中是使用。pickle序列化的是字节,而json序列化的是字符。
1.dumps && loads
import pickle def test(name):
print("hello,{}".format(name)) info = {
'name': 'The Count of Monte Cristo',
'type': 'Movie',
'func': test
} data = pickle.dumps(info)
print(data)
print(type(data)) #输出
b'\x80\x03}q\x00(X\x04\x00\x00\x00nameq\x01X\x19\x00\x00\x00The Count of Monte Cristoq\x02X\x04\x00\x00\x00typeq\x03X\x05\x00\x00\x00Movieq\x04X\x04\x00\x00\x00funcq\x05c__main__\ntest\nq\x06u.' <class 'bytes'>
import pickle get_data = pickle.loads(data)
get_data['func']('cat')
print(get_data) #输出
hello,cat
{'name': 'The Count of Monte Cristo', 'type': 'Movie', 'func': <function test at 0x00000235350A7F28>}
2. dump && load
import pickle def test(name):
print("hello,{}".format(name)) info = {
'name': 'The Count of Monte Cristo',
'type': 'Movie',
'func': test
} with open('test.txt', 'wb') as f:
pickle.dump(info, f) # 写入test.txt文件中的内容 �}q (X typeqX MovieqX funcqc__main__
test
qX nameqX The Count of Monte Cristoqu.
import pickle
with open('test.txt', 'rb') as f:
get_data = pickle.load(f)
print(get_data)
# 输出
{'name': 'The Count of Monte Cristo', 'func': <function test at 0x000001BA2AB4D510>, 'type': 'Movie'}
总结:
- json值支持简单的数据类型,pickle支持所有的数据类型。
- pickle只能支持python本身的序列化和反序列化,不能用作和其他语言做数据交互,而json可以。
- pickle序列化的是整个的数据对象,所以反序列化函数时,函数体中的逻辑变了,是跟着心的函数体走的。
json&pickle序列化的更多相关文章
- Python3基础(4)匿名函数、装饰器、生成器、迭代器、内置函数、json&pickle序列化、软件目录开发规范、不同目录间模块调用
---------------个人学习笔记--------------- ----------------本文作者吴疆-------------- ------点击此处链接至博客园原文------ 1 ...
- json & pickle 序列化
#!/usr/bin/python # -*- coding: utf-8 -*- # 序列化: 例如把字典写进文件 info = { 'name': 'alex', 'age': 22 } f = ...
- json&pickle序列化和软件开发规范
json和pickle 用于序列化的两个模块 json 用于字符串和python数据类型间进行转换,json只支持列表,字典这样简单的数据类型 但是它不支持类,函数这样的数据类型转换 pickle ...
- 13、Python文件处理、os模块、json/pickle序列化模块
一.字符编码 Python3中字符串默认为Unicode编码. str类型的数据可以编码成其他字符编码的格式,编码的结果为bytes类型. # coding:gbk x = '上' # 当程序执行时, ...
- Python序列化,json&pickle&shelve模块
1. 序列化说明 序列化可将非字符串的数据类型的数据进行存档,如字典.列表甚至是函数等等 反序列化,将通过序列化保存的文件内容反序列化即可得到数据原本的样子,可直接使用 2. Python中常用的序列 ...
- 第五章 模块之 shtil 、 json / pickle、importlib、collections
5.8 shtil 高级的 文件.文件夹.压缩包 处理模块 shutil.rmtree 删除目录 import shutilshutil.rmtree(path) shutil.move 重命名:移动 ...
- python常用模块(模块和包的解释,time模块,sys模块,random模块,os模块,json和pickle序列化模块)
1.1模块 什么是模块: 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文 ...
- python序列化: json & pickle & shelve 模块
一.json & pickle & shelve 模块 json,用于字符串 和 python数据类型间进行转换pickle,用于python特有的类型 和 python的数据类型间进 ...
- Python-Day4 Python基础进阶之生成器/迭代器/装饰器/Json & pickle 数据序列化
一.生成器 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面 ...
随机推荐
- 53. [LeetCode] Maximum Subarray
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- Python-2.7 配置tab自动补全功能
作者博文地址:http://www.cnblogs.com/spiritman/ 之前一直使用shell编程,习惯了shell的 tab 自动补全功能,而Python的命令行却不支持 tab 自动补全 ...
- 通过Nrgok映射外网调试微信
一.注册账号 注册地址:http://www.ngrok.cc/login 登录系统,新增域名 二.下载客户端,修改配置文件 修改ngrok.cfg auth_token值登录平台管理系统可查看 su ...
- 20172321 2018-2019《Java软件结构与数据结构》第三周学习总结
教材学习内容总结 第五章 5.1概述 队列是一种线性集合,其元素从一端加入,从另一端删除:队列的处理方式是先进先出(First in First out). 与栈的比较(LIFO) 栈是一端操作,先进 ...
- KNY团队与“易校”小程序介绍
一.团队介绍 “KNY”团队是软件工程专业中的一支充满了斗志,充满了自信的队伍,由三人组成,每个队员都在为我们共同一致的目标而努力:我们三个人的小程序的知识都相对薄弱,但我们不甘落后,一直在努力的学习 ...
- 做更好的自己 ——读《我是IT小小鸟》有感
转眼间大一已经过了一大半了,到了大学,才发现初高中时父母所说的“到了大学你就轻松了···”都是骗人的.但我脑海里却一直被这个观点所支配,以至于我在大一上学期里无所事事,不知道干些什么.学习也没重视,分 ...
- C#高级编程 (第六版) 学习 第三章:对象和类型
第三章 对象和类型 1,类和结构 类存储在托管堆上 结构存储在堆栈上 2,类成员 类中的数据和函数称为类成员 数据成员 数据成员包括了字段.常量和事件 函数成员 方法:与某个类相关的函数,可以 ...
- js登录界面代码自用
var btn = document.getElementById("a4"); var usne = document.getElementById("username ...
- 更改HTTP头信息
http信息分三部分 1.请求行 GET lizi.php HTTP/1.1 2.HTTP头信 Host: localhost Connection: keep-alive Cache-Contr ...
- 更新user的方法
from django.contrib.auth.admin import UserAdmin from django.contrib.auth.forms import UserChangeForm ...