摘自:http://www.cnblogs.com/pinard/p/7160330.html

先看下列三篇,再理解此篇会更容易些(个人意见)

skip-gramCBOWWord2Vec

  • 词向量基础
  • CBOW与Skip-Gram用于神经网络语言模型


词向量基础

用词向量来表示词并不是word2vec的首创,在很久之前就出现了。最早的词向量是很冗长的,它使用是词向量维度大小为整个词汇表的大小,对于每个具体的词汇表中的词,将对应的位置置为1。比如我们有下面的5个词组成的词汇表,词"Queen"的序号为2, 那么它的词向量就是(0,1,0,0,0)(0,1,0,0,0)。同样的道理,词"Woman"的词向量就是(0,0,0,1,0)(0,0,0,1,0)。这种词向量的编码方式我们一般叫做1-of-N representation或者one hot representation.

One hot representation用来表示词向量非常简单,但是却有很多问题。最大的问题是我们的词汇表一般都非常大,比如达到百万级别,这样每个词都用百万维的向量来表示简直是内存的灾难。这样的向量其实除了一个位置是1,其余的位置全部都是0,表达的效率不高,能不能把词向量的维度变小呢?

Dristributed representation可以解决One hot representation的问题,它的思路是通过训练,将每个词都映射到一个较短的词向量上来。所有的这些词向量就构成了向量空间,进而可以用普通的统计学的方法来研究词与词之间的关系。这个较短的词向量维度是多大呢?这个一般需要我们在训练时自己来指定。

比如下图我们将词汇表里的词用"Royalty","Masculinity", "Femininity"和"Age"4个维度来表示,King这个词对应的词向量可能是(0.99,0.99,0.05,0.7)(0.99,0.99,0.05,0.7)。当然在实际情况中,我们并不能对词向量的每个维度做一个很好的解释。

有了用Dristributed representation表示的较短的词向量,我们就可以较容易的分析词之间的关系了,比如我们将词的维度降维到2维,有一个有趣的研究表明,用下图的词向量表示我们的词时,我们可以发现:

可见我们只要得到了词汇表里所有词对应的词向量,那么我们就可以做很多有趣的事情了。不过,怎么训练得到合适的词向量呢?一个很常见的方法是使用神经网络语言模型。


CBOW与Skip-Gram用于神经网络语言模型

在word2vec出现之前,已经有用神经网络DNN来用训练词向量进而处理词与词之间的关系了。采用的方法一般是一个三层的神经网络结构(当然也可以多层),分为输入层,隐藏层和输出层(softmax层)。

这个模型是如何定义数据的输入和输出呢?一般分为CBOW(Continuous Bag-of-Words 与Skip-Gram两种模型。

  • CBOW模型:训练输入是某一个特征词的上下文相关的词对应的词向量,而输出就是这特定的一个词的词向量。
  • Skip-Gram模型:和CBOW的思路是反着来的,即输入是特定的一个词的词向量,而输出是特定词对应的上下文词向量。

******************************************************************************************************************************

  • CBOW模型
  1. input:我们的上下文大小取值为4,上下文对应的词有8个,前后各4个,这8个词是我们模型的输入。由于CBOW使用的是词袋模型,因此这8个词都是平等的,也就是不考虑他们和我们关注的词之间的距离大小,只要在我们上下文之内即可。
  2. output:期望输出词是"Learning",输出是所有词的softmax概率(训练的目标是期望训练样本特定词对应的softmax概率最大)
  3. Network:对应的CBOW神经网络模型输入层有8个神经元,输出层有词汇表大小个神经元。隐藏层的神经元个数我们可以自己指定。通过DNN的反向传播算法,我们可以求出DNN模型的参数,同时得到所有的词对应的词向量。
  4. 这样当我们有新的需求,要求出某8个词对应的最可能的输出中心词时,我们可以通过一次DNN前向传播算法并通过softmax激活函数找到概率最大的词对应的神经元即可。

  • Skip-Gram模型
  1. input:特定的这个词"Learning"是我们的输入
  2. output:我们的上下文大小取值为4,8个上下文词是我们的输出
  3. Network:我们的输入是特定词, 输出是softmax概率排前8的8个词,对应的Skip-Gram神经网络模型输入层有1个神经元,输出层有词汇表大小个神经元。隐藏层的神经元个数我们可以自己指定。通过DNN的反向传播算法,我们可以求出DNN模型的参数,同时得到所有的词对应的词向量。
  4. 这样当我们有新的需求,要求出某1个词对应的最可能的8个上下文词时,我们可以通过一次DNN前向传播算法得到概率大小排前8的softmax概率对应的神经元所对应的词即可。

以上就是神经网络语言模型中如何用CBOW与Skip-Gram来训练模型与得到词向量的大概过程。但是这和word2vec中用CBOW与Skip-Gram来训练模型与得到词向量的过程有很多的不同。

问题:

word2vec为什么 不用现成的DNN模型,要继续优化出新方法呢?最主要的问题是DNN模型的这个处理过程非常耗时。我们的词汇表一般在百万级别以上,这意味着我们DNN的输出层需要进行softmax计算各个词的输出概率的的计算量很大。有没有简化一点点的方法呢?可以去此处找答案

tensorflow在文本处理中的使用——skip-gram & CBOW原理总结的更多相关文章

  1. tensorflow在文本处理中的使用——Doc2Vec情感分析

    代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...

  2. tensorflow在文本处理中的使用——CBOW词嵌入模型

    代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...

  3. tensorflow在文本处理中的使用——skip-gram模型

    代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...

  4. tensorflow在文本处理中的使用——Word2Vec预测

    代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...

  5. tensorflow在文本处理中的使用——TF-IDF算法

    代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...

  6. tensorflow在文本处理中的使用——词袋

    代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...

  7. tensorflow在文本处理中的使用——辅助函数

    代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...

  8. TensorFlow实现文本情感分析详解

    http://c.biancheng.net/view/1938.html 前面我们介绍了如何将卷积网络应用于图像.本节将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句 ...

  9. jQuery文本框中的事件应用

    jQuery文本框中的事件应用 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "ht ...

随机推荐

  1. PHPCMS快速建站系列之pc:get标签的应用

    GET标签使用方式如下: {pc:get sql="SELECT * FROM phpcms_member" cache="3600" page="$ ...

  2. 详解 CALayer 和 UIView 的区别和联系

    http://www.cocoachina.com/ios/20150828/13244.html 作者:@武蕴牛x 授权本站转载. 前言 前面发了一篇iOS 面试的文章,在说到 UIView 和 C ...

  3. oralce update操作

    1.基本语法:update  表名 set 列名=表达式 [列名=表达式. . . ] where 条件 2.使用的注意事项: v  UPDATE语法可以用新值更新原有表行中的各列 把zs的性别改为女 ...

  4. Java练习 SDUT-2253_分数加减法

    分数加减法 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 编写一个C程序,实现两个分数的加减法 Input 输入包含多 ...

  5. jQuery 图片跟着鼠标动

    html默认鼠标样式改成图片时格式为 .ani 图片跟随鼠标挪动 html <div id="mouseImg"> <img src="images/问 ...

  6. IoT SaaS加速器——助力阿尔茨海默病人护理

    场景介绍 阿尔茨海默病,是导致中老年人认知功能障碍的最常见疾病之一,是发生在老年期及老年前期的一种原发性退行性脑病.据估计,全世界痴呆症患者数量为4700万,到2030年将达到7500万人.痴呆症患者 ...

  7. 22-2 模板语言的进阶和fontawesome字体的使用

    一  fontfawesome字体的使用 http://fontawesome.dashgame.com/ 官网 1 下载 2 放到你的项目下面 3 html导入这个目录 实例: class最前面的f ...

  8. Libev源码分析07:Linux下的eventfd简介

    #include <sys/eventfd.h> int eventfd(unsigned int initval, int flags); eventfd创建一个eventfd对象,该对 ...

  9. 模板—tarjan缩点

    void tarjan(int x) { dfn[x]=++cnt;low[x]=cnt; vi[x]=; stack[++top]=x; for(rint i=f(x);i;i=n(i)) if(! ...

  10. mongodb Helper

    /// <summary> /// mongoDBHelper访问助手 /// </summary> public class mongoDBHelper { /// < ...