『PyTorch』第十一弹_torch.optim优化器 每层定制参数
一、简化前馈网络LeNet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
import torch as t class LeNet(t.nn.Module): def __init__( self ): super (LeNet, self ).__init__() self .features = t.nn.Sequential( t.nn.Conv2d( 3 , 6 , 5 ), t.nn.ReLU(), t.nn.MaxPool2d( 2 , 2 ), t.nn.Conv2d( 6 , 16 , 5 ), t.nn.ReLU(), t.nn.MaxPool2d( 2 , 2 ) ) # 由于调整shape并不是一个class层, # 所以在涉及这种操作(非nn.Module操作)需要拆分为多个模型 self .classifiter = t.nn.Sequential( t.nn.Linear( 16 * 5 * 5 , 120 ), t.nn.ReLU(), t.nn.Linear( 120 , 84 ), t.nn.ReLU(), t.nn.Linear( 84 , 10 ) ) def forward( self , x): x = self .features(x) x = x.view( - 1 , 16 * 5 * 5 ) x = self .classifiter(x) return x net = LeNet() |
二、优化器基本使用方法
- 建立优化器实例
- 循环:
- 清空梯度
- 向前传播
- 计算Loss
- 反向传播
- 更新参数
1
2
3
4
5
6
7
8
9
10
11
|
from torch import optim # 通常的step优化过程 optimizer = optim.SGD(params = net.parameters(), lr = 1 ) optimizer.zero_grad() # net.zero_grad() input_ = t.autograd.Variable(t.randn( 1 , 3 , 32 , 32 )) output = net(input_) output.backward(output) optimizer.step() |
三、网络模块参数定制
为不同的子网络参数不同的学习率,finetune常用,使分类器学习率参数更高,学习速度更快(理论上)。
1.经由构建网络时划分好的模组进行学习率设定,
1
2
3
|
# # 直接对不同的网络模块制定不同学习率 optimizer = optim.SGD([{ 'params' : net.features.parameters()}, # 默认lr是1e-5 { 'params' : net.classifiter.parameters(), 'lr' : 1e - 2 }], lr = 1e - 5 ) |
2.以网络层对象为单位进行分组,并设定学习率
1
2
3
4
5
6
7
8
9
10
|
# # 以层为单位,为不同层指定不同的学习率 # ## 提取指定层对象 special_layers = t.nn.ModuleList([net.classifiter[ 0 ], net.classifiter[ 3 ]]) # ## 获取指定层参数id special_layers_params = list ( map ( id , special_layers.parameters())) print (special_layers_params) # ## 获取非指定层的参数id base_params = filter ( lambda p: id (p) not in special_layers_params, net.parameters()) optimizer = t.optim.SGD([{ 'params' : base_params}, { 'params' : special_layers.parameters(), 'lr' : 0.01 }], lr = 0.001 ) |
四、在训练中动态的调整学习率
1
2
3
4
5
6
7
8
9
|
'''调整学习率''' # 新建optimizer或者修改optimizer.params_groups对应的学习率 # # 新建optimizer更简单也更推荐,optimizer十分轻量级,所以开销很小 # # 但是新的优化器会初始化动量等状态信息,这对于使用动量的优化器(momentum参数的sgd)可能会造成收敛中的震荡 # ## optimizer.param_groups:长度2的list,optimizer.param_groups[0]:长度6的字典 print (optimizer.param_groups[ 0 ][ 'lr' ]) old_lr = 0.1 optimizer = optim.SGD([{ 'params' : net.features.parameters()}, { 'params' : net.classifiter.parameters(), 'lr' : old_lr * 0.1 }], lr = 1e - 5 ) |
可以看到optimizer.param_groups结构,[{'params','lr', 'momentum', 'dampening', 'weight_decay', 'nesterov'},{……}],集合了优化器的各项参数。
『PyTorch』第十一弹_torch.optim优化器 每层定制参数的更多相关文章
- 『PyTorch』第十一弹_torch.optim优化器
一.简化前馈网络LeNet import torch as t class LeNet(t.nn.Module): def __init__(self): super(LeNet, self).__i ...
- 『PyTorch』第十三弹_torch.nn.init参数初始化
初始化参数的方法 nn.Module模块对于参数进行了内置的较为合理的初始化方式,当我们使用nn.Parameter时,初始化就很重要,而且我们也可以指定代替内置初始化的方式对nn.Module模块进 ...
- 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...
- 『PyTorch』第三弹重置_Variable对象
『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data ...
- 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上
总结一下相关概念: torch.Tensor - 一个近似多维数组的数据结构 autograd.Variable - 改变Tensor并且记录下来操作的历史记录.和Tensor拥有相同的API,以及b ...
- 『PyTorch』第十弹_循环神经网络
RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础R ...
- 『PyTorch』第五弹_深入理解autograd_上:Variable属性方法
在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创 ...
- 『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数
一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性 ...
- 『PyTorch』第五弹_深入理解autograd_中:Variable梯度探究
查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和ho ...
随机推荐
- 2019-3-1-WPF-从零开始开发-dotnet-Remoting-程序
title author date CreateTime categories WPF 从零开始开发 dotnet Remoting 程序 lindexi 2019-03-01 09:30:45 +0 ...
- Uva10817 Headmaster's Headache
https://odzkskevi.qnssl.com/b506a3c20adad78678917d1ff4c9b953?v=1508327485 [题解] dp[i][S1][S2]表示前i个教师选 ...
- Html5知识点以及兼容性
什么的HTNL5? HTML5 是最新的 HTML 标准. HTML5 是专门为承载丰富的 web 内容而设计的,并且无需额外插件. HTML5 拥有新的语义.图形以及多媒体元素. HTML5 提供的 ...
- webpack学习之——Entry Points(入口起点)
1.Entry property(entry属性) 1.1 Single Entry (Shorthand) Syntax(单个入口语法) 用法:entry: string | Array<st ...
- 杨柳絮-Info:太原市多部门通力合作科学治理杨柳飞絮效果好
ylbtech-杨柳絮-Info:太原市多部门通力合作科学治理杨柳飞絮效果好 1.返回顶部 1. 太原市多部门通力合作科学治理杨柳飞絮效果好 2016-04-21 07:16 4月10日,随着气温升高 ...
- arcgis地图窗口操作
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- 对List<Map<String, Object>>集合排序
private void mySort(List<Map<String, Object>> list) { //list为待排序的集合,按SEQ字段排序 Comparator& ...
- 【JZOJ5081】【GDSOI2017第三轮模拟】Travel Plan 背包问题+双指针+树的dfs序
题面 100 注意到ban的只会是一个子树,所以我们把原树转化为dfs序列. 然后题目就转化为,询问一段ban的区间,之后的背包问题. 比赛的时候,我想到这里,于是就开始想区间合并,于是搞了线段树合并 ...
- 公司mysql问题三
数据库连接不上,解决方案: # 加在绿框?useUnicode=true&characterEncoding=UTF-8&serverTimezone=UTC
- npm上面实用的第三方工具包
npm上面实用的第三方工具包 live-server 作用:为页面提供实时刷新重载的功能,并且能提供一个http服务器 官方地址:https://www.npmjs.com/package/live- ...