期望dp+高斯消元+bfs——hdu4418
高斯消元又弄了半天。。
注意只要能建立矩阵,那就必定有解,所以高斯消元里可以直接return 1
#include<bits/stdc++.h>
using namespace std; const int maxn = ;
const double esp = 1e-; int n,m,x,y,d;
double p[maxn],a[maxn][maxn],b[maxn];
int equ,var; int Gauss(){
for(int i=;i<n;i++){
int maxr=i;
for(int j=i+;j<n;j++)
if(fabs(a[j][i])>fabs(a[maxr][i]))
maxr=j;
if(fabs(a[maxr][i])<esp)continue;
if(maxr!=i)
swap(a[maxr],a[i]);swap(b[maxr],b[i]); for(int j=i+;j<n;j++){
if(fabs(a[j][i])<esp)continue;
double rate=a[j][i]/a[i][i];
for(int k=i;k<n;k++)
a[j][k]-=rate*a[i][k];
b[j]-=rate*b[i];
}
}
for(int i=n-;i>=;i--){
if(fabs(a[i][i])<esp)continue;
for(int j=i+;j<n;j++)
b[i]-=a[i][j]*b[j];
b[i]/=a[i][i];
}
return ;
} int id[maxn],cnt;
void bfs(int s){
memset(id,-,sizeof id);
cnt=;
queue<int>q;
q.push(s);id[s]=cnt++;
while(q.size()){
int x=q.front();q.pop();
for(int i=;i<=m;i++){
if(fabs(p[i])<esp)continue;
int y=(x+i)%n;
if(id[y]==-)
q.push(y),id[y]=cnt++;
}
}
} int main(){
int t;cin>>t;
while(t--){
scanf("%d%d%d%d%d",&n,&m,&y,&x,&d); for(int i=;i<=m;i++)
scanf("%lf",&p[i]),p[i]/=;
if(x==y){puts("0.00");continue;} n=*(n-);
if(d==)x=n-x;
bfs(x);
if(id[y]==- && id[n-y]==-){
puts("Impossible !");continue;
}
equ=var=cnt; memset(a,,sizeof a);
memset(b,,sizeof b);
for(int i=;i<n;i++){
if(id[i]==-)continue;
a[id[i]][id[i]]=;
if(i==y || i==n-y)continue;//到了终点y
for(int j=;j<=m;j++){
int y=(i+j)%n;
if(id[y]!=-){
a[id[i]][id[y]]-=p[j];
b[id[i]]+=j*p[j];
}
}
}
if(Gauss())
printf("%.2lf\n",b[id[x]]);
else printf("Impossible !\n");
}
}
期望dp+高斯消元+bfs——hdu4418的更多相关文章
- BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元
BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...
- hdu4418 Time travel 【期望dp + 高斯消元】
题目链接 BZOJ4418 题解 题意:从一个序列上某一点开始沿一个方向走,走到头返回,每次走的步长各有概率,问走到一点的期望步数,或者无解 我们先将序列倍长形成循环序列,\(n = (N - 1) ...
- HDU4418 Time travel(期望dp 高斯消元)
题意 题目链接 Sol mdzz这题真的太恶心了.. 首先不难看出这就是个高斯消元解方程的板子题 \(f[x] = \sum_{i = 1}^n f[to(x + i)] * p[i] + ave\) ...
- ZJUT 1423 地下迷宫(期望DP&高斯消元)
地下迷宫 Time Limit:1000MS Memory Limit:32768K Description: 由于山体滑坡,DK被困在了地下蜘蛛王国迷宫.为了抢在DH之前来到TFT,DK必须尽快走 ...
- HDU 2262 Where is the canteen 期望dp+高斯消元
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...
- 【noi2019集训题1】 脑部进食 期望dp+高斯消元
题目大意:有n个点,m条有向边,每条边上有一个小写字母. 有一个人从1号点开始在这个图上随机游走,游走过程中他会按顺序记录下走过的边上的字符. 如果在某个时刻,他记录下的字符串中,存在一个子序列和S2 ...
- LightOJ 1151 Snakes and Ladders 期望dp+高斯消元
题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定 而且 ...
- P4457-[BJOI2018]治疗之雨【期望dp,高斯消元】
正题 题目链接:https://www.luogu.com.cn/problem/P4457 题目大意 开始一个人最大生命值为\(n\),剩余\(hp\)点生命,然后每个时刻如果生命值没有满那么有\( ...
- Codeforces.24D.Broken robot(期望DP 高斯消元)
题目链接 可能这儿的会更易懂一些(表示不想再多写了). 令\(f[i][j]\)表示从\((i,j)\)到达最后一行的期望步数.那么有\(f[n][j]=0\). 若\(m=1\),答案是\(2(n- ...
随机推荐
- 清除浮动的方法(float)
方式一: 额外标签法:给浮动的元素后面新增加一个清除浮动的盒子 例如: <div style="float: left">浮动盒子</div> <di ...
- UPDATE - 更新一个表中的行
SYNOPSIS UPDATE [ ONLY ] table SET column = { expression | DEFAULT } [, ...] [ FROM fromlist ] [ WHE ...
- pip3 常用操作
清华大学pip镜像 https://mirrors.tuna.tsinghua.edu.cn/help/pypi/ # 设置为默认 pip install pip -U pip config set ...
- linux7查看时间同步服务器的匹配源
当服务器时间与设定好的同步时间源的时间有差异的时候,一般都需要先查看本机的时间同步服务功能是否在正常的运转,以及同步的时间源是哪里,在这里为大家提供一个检查时间用的命令. linux/centos 7 ...
- 反编译字节码角度分析synchronized关键字的原理
1.synchronized介绍 synchronized是java关键字.JVM规范中,synchronized关键字用于在线程并发执行时,保证同一时刻,只有一个线程可以执行某个代码块或方法:同时还 ...
- vue实现京东动态楼层效果
页面效果如下 <template> <div> <h1>首页</h1> <section class="floor-nav" ...
- curl命令测试服务器是否支持断点续传
通过curl命令测试服务器是否支持断点续传 curl -i --range 0-9 http://www.baidu.com/img/bdlogo.gif HTTP/1.1 206 Partial ...
- AES加密php,java,.net三种语言同步实现加密、解密
话不多数上代码: java::: /* * To change this license header, choose License Headers in Project Properties. * ...
- 高危预警| SQL数据库成主要攻击对象,或引发新一轮大规模勒索
近日,阿里云安全团队发现,目前互联网上的服务器,SQL数据库仍然有不少处于直接暴露在公网的状态,且数量有上升趋势.黑客可以利用数据库存在的漏洞或弱口令直接获取数据,并植入勒索和挖矿病毒寻求牟利.阿里云 ...
- 扫描线+树状数组——cf1191F
把所有点离散化,虚构一根扫描线从上往下扫,每行的点从左往右算贡献,开一个树状数组维护每个离散化后的x坐标是否已经有点 扫描到一个点时,先把这个点更新到树状数组里,每个点的贡献是它左边的所有点数*到它相 ...