题解【洛谷P2070】刷墙
将每一次移动的距离进行差分,前缀和判断移动的距离是否\(\geq 2\)即可。
#include <bits/stdc++.h>
#define itn int
#define gI gi
using namespace std;
typedef long long ll;
inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
}
inline ll gl()
{
ll f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
}
const int maxn = 100003;
int n, ans, now, sum;
struct Node
{
int x, cf;
} a[maxn * 2];
inline bool cmp(Node x, Node y) {return x.x < y.x;}
int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi();
for (int i = 1; i <= n; i+=1)
{
int x = gi();
char s;
scanf("%c", &s);
if (s == 'L')
{
a[i * 2 - 1] = (Node){now, -1};
a[i << 1] = (Node){now - x, 1};
now -= x;
}
else
{
a[i * 2 - 1] = (Node){now, 1};
a[i << 1] = (Node){now + x, -1};
now += x;
}
}
sort(a + 1, a + 1 + (n << 1), cmp);
now = a[1].cf;
for (int i = 2; i <= n * 2; i+=1)
{
if (now >= 2) ans += a[i].x - a[i - 1].x;
now += a[i].cf;
}
printf("%d\n", ans);
return 0;
}
题解【洛谷P2070】刷墙的更多相关文章
- [洛谷P1707] 刷题比赛
洛谷题目连接:刷题比赛 题目背景 nodgd是一个喜欢写程序的同学,前不久洛谷OJ横空出世,nodgd同学当然第一时间来到洛谷OJ刷题.于是发生了一系列有趣的事情,他就打算用这些事情来出题恶心大家-- ...
- 洛谷 P1167 刷题
洛谷 P1167 刷题 洛谷传送门 题目描述 noip临近了,小A却发现他已经不会写题了.好在现在离竞赛还有一段时间,小A决定从现在开始夜以继日地刷题.也就是说小A废寝忘食,一天二十四小时地刷题. 今 ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- 题解-洛谷P5217 贫穷
洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...
- 题解 洛谷 P2010 【回文日期】
By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...
随机推荐
- SSM使用AbstractRoutingDataSource后究竟如何解决跨库事务
Setting: 绑定三个数据源(XA规范),将三个实例绑定到AbStractoutingDataSource的实例MultiDataSource(自定义的)对象中,mybatis SqlSessi ...
- 使用resultMap实现高级结果映射
使用resultMap实现高级结果映射 resultMap的属性: 1.属性 id:resultMap的唯一标识.type:resulMap的映射结果类型(一般为Java实体类).2.子节点 id:一 ...
- Miller-Rabin素数检测算法 acm模板
Miller-Rabin素数检测算法 其基于以下两个定理. Fermat小定理 若n是素数,则∀a(a̸≡0(modn))\forall a(a \not\equiv 0 \pmod{n})∀a(a̸ ...
- pycharm导入python包
总步骤:file --> settings --> poject interpreter --> 点击加号 --> 搜索需要导入的python包 --> 选中需要导入的p ...
- mui ajax
<!doctype html><html> <head> <meta charset="UTF-8"> <title>直 ...
- 怎么利用 ChromeDriver 和 Selenium对 CEF应用进行自动化测试-java实现
Overview ChromeDriver and Selenium are tools for automated testing of Chromium-based applications. T ...
- P3768 简单的数学题 [杜教筛,莫比乌斯反演]
\[\sum_{i=1}^{n}\sum_{j=1}^{n} ij\gcd(i,j)\] \[=\sum_{d=1}^{n} d \sum_{i=1}^{n}\sum_{j=1}^{n} ij[\gc ...
- CF571D Campus(19-1)
题意 \(n\)个点,维护两个森林,这里\(A,B\)两个森林对应的点都是一样的,相当于对两个森林操作都会影响这\(n\)个点 开始森林里的树都是一个点,\(A,B\)支持合并(但树结构互不影响),\ ...
- Costco这样的超级零售商,能不能干掉电商?
名创优品创始人叶国富曾说过,Costco只是没有来到中国(大陆),如果它来了,中国现在的零售业全部都会"死光".叶国富的话,似乎一语成箴. 随着Costco正式入华,其正在彻底搅动 ...
- 0级搭建类005-Oracle Solaris Unix安装 (11.4) 公开
项目文档引子系列是根据项目原型,制作的测试实验文档,目的是为了提升项目过程中的实际动手能力,打造精品文档AskScuti. 项目文档引子系列目前不对外发布,仅作为博客记录.如学员在实际工作过程中需提前 ...