The R qgraph Package: Using R to Visualize Complex Relationships Among Variables in a Large Dataset, Part One

A Tutorial by D. M. Wiig, Professor of Political Science, Grand View University

In my most recent tutorials I have discussed the use of the tabplot()package to visualize multivariate mixed data types in large datasets. This type of table display is a handy way to identify possible relationships among variables, but is limited in terms of interpretation and the number of variables that can be meaningfully displayed.

Social science research projects often start out with many potential independent predictor variables for a given dependant variable. If these variables are all measured at the interval or ratio level a correlation matrix often serves as a starting point to begin analyzing relationships among variables.

In this tutorial I will use the R packages SemiPar, qgraph and Hmisc in addition to the basic packages loaded when R is started. The code is as follows:

###################################################
#data from package SemiPar; dataset milan.mort
#dataset has 3652 cases and 9 vars
##################################################
install.packages(“SemiPar”)
install.packages(“Hmisc”)
install.packages(“qgraph”)
library(SemiPar)
####################################################

One of the datasets contained in the SemiPar packages is milan.mort. This dataset contains nine variables and data from 3652 consecutive days for the city of Milan, Italy. The nine variables in the dataset are as follows:

rel.humid (relative humidity)
tot.mort (total number of deaths)
resp.mort (total number of respiratory deaths)
SO2 (measure of sulphur dioxide level in ambient air)
TSP (total suspended particles in ambient air)
day.num (number of days since 31st December, 1979)
day.of.week (1=Monday; 2=Tuesday; 3=Wednesday; 4=Thursday; 5=Friday; 6=Saturday; 7=Sunday
holiday (indicator of public holiday: 1=public holiday, 0=otherwise
mean.temp (mean daily temperature in degrees celsius)

To look at the structure of the dataset use the following

#########################################
library(SemiPar)
data(milan.mort)
str(milan.mort)
###############################################

Resulting in the output:

> str(milan.mort)
‘data.frame’: 3652 obs. of 9 variables:
$ day.num : int 1 2 3 4 5 6 7 8 9 10 …
$ day.of.week: int 2 3 4 5 6 7 1 2 3 4 …
$ holiday : int 1 0 0 0 0 0 0 0 0 0 …
$ mean.temp : num 5.6 4.1 4.6 2.9 2.2 0.7 -0.6 -0.5 0.2 1.7 …
$ rel.humid : num 30 26 29.7 32.7 71.3 80.7 82 82.7 79.3 69.3 …
$ tot.mort : num 45 32 37 33 36 45 46 38 29 39 …
$ resp.mort : int 2 5 0 1 1 6 2 4 1 4 …
$ SO2 : num 267 375 276 440 354 …
$ TSP : num 110 153 162 198 235 …

As is seen above, the dataset contains 9 variables all measured at the ratio level and 3652 cases.

In doing exploratory research a correlation matrix is often generated as a first attempt to look at inter-relationships among the variables in the dataset. In this particular case a researcher might be interested in looking at factors that are related to total mortality as well as respiratory mortality rates.

A correlation matrix can be generated using the cor function which is contained in the stats package. There are a variety of functions for various types of correlation analysis. The cor function provides a fast method to calculate Pearson’s r with a large dataset such as the one used in this example.

To generate a zero order Pearson’s correlation  matrix use the following:

###############################################
#round the corr output to 2 decimal places
#put output into variable cormatround
#coerce data to matrix
#########################################
library(Hmisc)
cormatround round(cormatround, 2)
#################################################

The output is:

> cormatround > round(cormatround, 2)
Day.num day.of.week holiday mean.temp rel.humid tot.mort resp.mort SO2 TSP
day.num 1.00 0.00 0.01 0.02 0.12 -0.28 0.22 -0.34 0.07
day.of.week 0.00 1.00 0.00 0.00 0.00 -0.05 0.03 -0.05 -0.05
holiday 0.01 0.00 1.00 -0.07 0.01 0.00 0.01 0.00 -0.01
mean.temp 0.02 0.00 -0.07 1.00 -0.25 -0.43 -0.26 -0.66 -0.44
rel.humid 0.12 0.00 0.01 -0.25 1.00 0.01 -0.03 0.15 0.17
tot.mort -0.28 -0.05 0.00 -0.43 0.01 1.00 0.47 0.44 0.25
resp.mort -0.22 -0.03 -0.01 -0.26 -0.03 0.47 1.00 0.32 0.15
SO2 -0.34 -0.05 0.00 -0.66 0.15 0.44 0.32 1.00 0.63
TSP 0.07 -0.05 -0.01 -0.44 0.17 0.25 0.15 0.63 1.00
 
>

The matrix can be examined to look at intercorrelations among the nine variables, but it is very difficult to detect patterns of correlations within the matrix.  Also, when using the cor() function raw Pearson’s coefficients are reported, but significance levels are not.

A correlation matrix with significance can be generated by using thercorr() function, also found in the Hmisc package. The code is:

#############################################
library(Hmisc)
rcorr(as.matrix(milan.mort, type=”pearson”))
###################################################

The output is:

> rcorr(as.matrix(milan.mort, type="pearson"))
day.num day.of.week holiday mean.temp rel.humid tot.mort resp.mort SO2 TSP
day.num 1.00 0.00 0.01 0.02 0.12 -0.28 -0.22 -0.34 0.07
day.of.week 0.00 1.00 0.00 0.00 0.00 -0.05 -0.03 -0.05 -0.05
holiday 0.01 0.00 1.00 -0.07 0.01 0.00 -0.01 0.00 -0.01
mean.temp 0.02 0.00 -0.07 1.00 -0.25 -0.43 -0.26 -0.66 -0.44
rel.humid 0.12 0.00 0.01 -0.25 1.00 0.01 -0.03 0.15 0.17
tot.mort -0.28 -0.05 0.00 -0.43 0.01 1.00 0.47 0.44 0.25
resp.mort -0.22 -0.03 -0.01 -0.26 -0.03 0.47 1.00 0.32 0.15
SO2 -0.34 -0.05 0.00 -0.66 0.15 0.44 0.32 1.00 0.63
TSP 0.07 -0.05 -0.01 -0.44 0.17 0.25 0.15 0.63 1.00 n= 3652 P
day.num day.of.week holiday mean.temp rel.humid tot.mort resp.mort SO2 TSP
day.num 0.9771 0.5349 0.2220 0.0000 0.0000 0.0000 0.0000
day.of.week 0.9771 0.7632 0.8727 0.8670 0.0045 0.1175 0.0061
holiday 0.5349 0.7632 0.0000 0.4648 0.8506 0.6115 0.7793 0.4108
mean.temp 0.2220 0.8727 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
rel.humid 0.0000 0.8670 0.4648 0.0000 0.3661 0.1096 0.0000 0.0000
tot.mort 0.0000 0.0045 0.8506 0.0000 0.3661 0.0000 0.0000 0.0000
resp.mort 0.0000 0.1175 0.6115 0.0000 0.1096 0.0000 0.0000 0.0000
SO2 0.0000 0.0024 0.7793 0.0000 0.0000 0.0000 0.0000 0.0000
TSP 0.0000 0.0061 0.4108 0.0000 0.0000 0.0000 0.0000 0.0000
 
>

In a future tutorial I will discuss using significance levels and correlation strengths as methods of reducing complexity in very large correlation network structures.

The recently released package qgraph () provides a number of interesting functions that are useful in visualizing complex inter-relationships among a large number of variables. To quote from the CRAN documentation file qraph() “Can be used to visualize data networks as well as provides an interface for visualizing weighted graphical models.” (see CRAN documentation for ‘qgraph” version 1.4.2. See also http://sachaepskamp.com/qgraph).

The qgraph() function has a variety of options that can be used to produce specific types of graphical representations. In this first tutorial segment I will use the milan.mort dataset and the most basicqgraph functions to produce a visual graphic network of intercorrelations among the 9 variables in the dataset.

The code is as follows:

###################################################
library(qgraph)
#use cor function to create a correlation matrix with milan.mort dataset
#and put into cormat variable
###################################################
cormat=cor(milan.mort)  #correlation matrix generated
###################################################
###################################################
#now plot a graph of the correlation matrix
###################################################
qgraph(cormat, shape=”circle”, posCol=”darkgreen”, negCol=”darkred”, layout=”groups”, vsize=10)
###################################################

This code produces the following correlation network:

The correlation network provides a very useful visual picture of the intercorrelations as well as positive and negative correlations. The relative thickness and color density of the bands indicates strength of Pearson’s r and the color of each band indicates a positive or negative correlation – red for negative and green for positive.

By changing the “layout=” option from “groups” to “spring” a slightly different perspective can be seen. The code is:

########################################################
#Code to produce alternative correlation network:
#######################################################
library(qgraph)
#use cor function to create a correlation matrix with milan.mort dataset
#and put into cormat variable
##############################################################
cormat=cor(milan.mort) #correlation matrix generated
##############################################################
###############################################################
#now plot a circle graph of the correlation matrix
##########################################################
qgraph(cormat, shape=”circle”, posCol=”darkgreen”, negCol=”darkred”, layout=”spring”, vsize=10)
###############################################################

The graph produced is below:

Once again the intercorrelations, strength of r and positive and negative correlations can be easily identified. There are many more options, types of graph and procedures for analysis that can be accomplished with the qgraph() package. In future tutorials I will discuss some of these.

转自:https://dmwiig.net/2017/03/10/the-r-qgraph-package-using-r-to-visualize-complex-relationships-among-variables-in-a-large-dataset-part-one/

THE R QGRAPH PACKAGE: USING R TO VISUALIZE COMPLEX RELATIONSHIPS AMONG VARIABLES IN A LARGE DATASET, PART ONE的更多相关文章

  1. R安装package报ERROR: a 'NAMESPACE' file is required

    R安装package报错: [root@Hadoop-NN-01 mysofts]# R CMD INSTALL trimcluster_0.1-1.tar.gz * installing to li ...

  2. R(二): http与R脚本通讯环境安装

    结合实际的工作环境,在开始R研究的时候,首先着手收集的就是能以Web方式发布R运行结果的基础框架,无耐的是,R一直以来常使用于个人电脑的客户端程序上,大家习惯性的下载R安装包,在自己的电脑上安装 -- ...

  3. 【R语言系列】R语言初识及安装

    一.R是什么 R语言是由新西兰奥克兰大学的Ross Ihaka和Robert Gentleman两个人共同发明. 其词法和语法分别源自Schema和S语言. R定义:一个能够自由幼小的用于统计计算和绘 ...

  4. python中换行,'\r','\n'及'、'\r\n'

    '\r'的本意是回到行首,'\n'的本意是换行. 所以回车相当于做的是'\r\n'或者'\n\r'.'\r'就是换行并回行首, '\n'就是换行并回行首,用'\r\n'表示换行并回行首. window ...

  5. 【R笔记】给R加个编译器——notepad++

    R的日记-给R加个编译器 转载▼ R是一款强大免费且开源的统计分析软件,这是R的长处,可也是其“缺陷”的根源:不似商业软件那样user-friendly.记得初学R时,给我留下最深印象的不是其功能的强 ...

  6. 【R语言入门】R语言中的变量与基本数据类型

    说明 在前一篇中,我们介绍了 R 语言和 R Studio 的安装,并简单的介绍了一个示例,接下来让我们由浅入深的学习 R 语言的相关知识. 本篇将主要介绍 R 语言的基本操作.变量和几种基本数据类型 ...

  7. R下载package的一些小问题

    1.Error in install.packages : unable to create ‘C:/Users/???/Documents/R/win-library\3.5 采用管理员身份运行,先 ...

  8. R统计建模与R软件

    教材目录 第一章 概率统计的基本知识 第二章 R软件的使用 第三章 数据描述性分析 第四章 参数估计 第五章 假设检验 第六章 回归分析 第七章 方差分析 第八章 应用多元分析(I) 第九章 应用多元 ...

  9. linux CentOS 权限问题修复(chmod 777 -R 或者chmod 755 -R问题修复)

    我个人曾经有一次经历: 就是在修改文件夹权限的时候,本来该执行: #chmod 777 -R ./ 结果我漏掉了那个".";执行的命令是chmod 777 -R /. 这个命令一定 ...

随机推荐

  1. HBase应用快速学习

    HBase是一个高性能.面向列.可伸缩的开源分布式NoSQL数据库,是Google Bigtable的开源实现. HBase的思想和应用和传统的RDBMS,NoSQL等有比较大的区别,这篇文章从HBa ...

  2. java 基础知识六 字符串1

    java  基础知识六  字符串1 String 不是java的基本数据类型 String 不是java的基本数据类型 String 不是java的基本数据类型 字符串是是一个字符序列 1.创建 创建 ...

  3. Git托管

    前面的话 本文将主要介绍如何使用Github来托管Git服务 SSH 大多数Git服务器都会选择使用SSH公钥来进行授权.系统中的每个用户都必须提供一个公钥用于授权 首先先确认一下是否已经有一个公钥了 ...

  4. 《Python自然语言处理》第一章-练习17

    问题描述: 使用text9.index()查找词sunset的索引值.你需要将这个词作为一个参数插入到圆括号之间.通过尝试和出错的过程中,找到完整的句子中包含这个词的切片. 解题思路: 用两个集合,一 ...

  5. 网络语音视频技术浅议(附多个demo源码下载)

    我们在开发实践中常常会涉及到网络语音视频技术.诸如即时通讯.视频会议.远程医疗.远程教育.网络监控等等,这些网络多媒体应用系统都离不开网络语音视频技术.本人才疏学浅,对于网络语音视频技术也仅仅是略知皮 ...

  6. webpack 打包成功,但是css不起作用

    问题: webpack 打包成功,但是css不起作用 问题分析/解决: 原因有以下几种 使用了webpack2的语法规则不正确; webpack2要求必须写-loader; 可能是只写了css-loa ...

  7. 2017最新苹果 APPLE ID注册流程

    不管你是苹果开发者还是苹果爱好者,只要你手中有苹果的终端(IPHONE .IPAD .ITouch,MAC电脑) 你想用苹果的一些服务,你就必须要申请苹果APPLE ID,才能享受到苹果提供高品质的服 ...

  8. cocos2d-x-Json/XML文件

    数据存储几种方式 1. 数据库 2. 文件 3. 内存 这里介绍Json格式与XML格式的文件存储 常用的文件存储数据的格式 1. Json格式 2. XML格式 Json适合存储小数据,XML适合存 ...

  9. 详解常用的gulp命令

    gulp.js是一款自动化构建工具,我们经常使用它在开发过程自动执行常见的任务.gulp.js 是基于 Node.js 构建的,利用 Node.js,可以快速构建项目. 由于gulp使用基于node, ...

  10. 关于特殊文件权限:suid、sgid和sticky-bit

    用 ls –l 命令时,能看到三个八进制数字,表示文件的权限.其实文件的权限应该用4个八进制文件来表示,没有显示的那个是第一位,用来设定一些特殊的权限,这个八进制数字的三个位是:SUID.SGID.s ...