1.介绍

  floyd算法只有五行代码,代码简单,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3),可以求多源最短路问题。

2.思想:

  Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。

举个例子:已知下图,

  如现在只允许经过1号顶点,求任意两点之间的最短路程,只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

for(i=; i<=n; i++)
{
for(j=; j<=n; j++)
{
if ( e[i][j] > e[i][]+e[][j] )
e[i][j] = e[i][]+e[][j];
}
}

  接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

//经过1号顶点
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if (e[i][j] > e[i][]+e[][j])
e[i][j]=e[i][]+e[][j];
//经过2号顶点
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if (e[i][j] > e[i][]+e[][j])
e[i][j]=e[i][]+e[][j];

  最后允许通过所有顶点作为中转,代码如下:

for(k=; k<=n; k++)
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];

这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。与上面相同

3.代码模板:

#include <stdio.h>
#define inf 0x3f3f3f3f
int map[][];
int main()
{
int k,i,j,n,m;
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m); //初始化
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(i==j)
map[i][j]=;
else
map[i][j]=inf;
int a,b,c;
//读入边
for(i=; i<=m; i++)
{
scanf("%d %d %d",&a,&b,&c);
map[a][b]=c;//这是一个有向图
} //Floyd-Warshall算法核心语句
for(k=; k<=n; k++)
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(map[i][j]>map[i][k]+map[k][j] )
map[i][j]=map[i][k]+map[k][j]; //输出最终的结果,最终二维数组中存的即使两点之间的最短距离
for(i=; i<=n; i++)
{
for(j=; j<=n; j++)
{
printf("%10d",map[i][j]);
}
printf("\n");
}
return ;
}

最短路之Floyd算法的更多相关文章

  1. HDOJ 1217 Arbitrage(拟最短路,floyd算法)

    Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  2. 最短路 之 floyd 算法

    Floyd 在我认为这是最短路算法中最简单的一个,也是最low的一个. 所以我们组一位大佬给他起了一个新的名字,叫做超时!!! (其实如果数据范围很小的话,这个算法还是蛮好用的!!) 这个算法比较简单 ...

  3. 21.多源最短路(floyd算法)

    时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 已知n个点(n<=100),给你n*n的方阵,a[i,j] ...

  4. 最短路,floyd算法,图的最短路径

    题目描述: 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线 ...

  5. 图论算法(二)最短路算法:Floyd算法!

    最短路算法(一) 最短路算法有三种形态:Floyd算法,Shortset Path Fast Algorithm(SPFA)算法,Dijkstra算法. 我个人打算分三次把这三个算法介绍完. (毕竟写 ...

  6. (poj 3660) Cow Contest (floyd算法+传递闭包)

    题目链接:http://poj.org/problem?id=3660 Description N ( ≤ N ≤ ) cows, conveniently numbered ..N, are par ...

  7. 最短路--floyd算法模板

    floyd算法是求所有点之间的最短路的,复杂度O(n3)代码简单是最大特色 #include<stdio.h> #include<string.h> ; const int I ...

  8. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

  9. 多源最短路Floyd 算法————matlab实现

    弗洛伊德(Floyd)算法是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计 ...

随机推荐

  1. ecshop调用指定分类和个数的文章列表

    举例如首页调用方法: 1.先打开index.php文件找到以下代码: $smarty->assign('new_articles', index_get_new_articles()); // ...

  2. Kubernetes服务之StatefulSets简介

    StatefulSets在v1.5时还是个beta特性,它取代了v1.4的PetSets特性.PetSets的用户可以参考v1.5的升级指导,将正在运行的PeetSets升级到StatefulSets ...

  3. Docker 初步认识

    1.docker 是什么? 一个开源的应用容器引擎,个人理解 就是虚拟的应用运行环境. 2.安装Docker for windows 下载地址 :https://store.docker.com/ed ...

  4. websocket多线程问题

    title: websocket多线程问题 date: 2017-06-28 11:21:24 categories: websocket tags: [websocket] --- 开发框架 spr ...

  5. css之选择器总结

    首先我们来看下有哪些选择器??? 一.基础选择器: html标签选择器:通过html标签来选择元素. ①所有的html标签都可以当做选择器. ②无论标签藏多深都会被选中. ③选择的是所有的标签而不是某 ...

  6. php几行代码实现CSV格式文件输出

    //适用于不需要设置格式简单将数据导出的程序,多多指教...... $str .= 'pro_code'.','.'words'.'\n';//首先写入表格标题栏 foreach($is_error ...

  7. 推荐一个基于Vue2.0的的一款移动端开发的UI框架,特别好用。。。

    一丶YDUI 一只注重审美,且性能高效的移动端&微信UI. 下面为地址自己研究去吧! 我的项目正在用,以前用的Mint-ui但是现在感觉还是这个好一点,官方给出的解释很清楚,很实用. 官方地址 ...

  8. AngularJS4.0环境搭建详解--windows系统环境

    第一步:安装NodeJS 下载最新版的NodeJS并安装,安装完成后打开CMD命令行,输入以下命令: node -v 若返回类似版本号则代表NodeJS安装成功,如下: 第二部 安装npm 新版的No ...

  9. C/C++中对链表操作的理解&&实例分析

    链表概述 链表是一种常见的重要的数据结构.它是动态地进行存储分配的一种结构.它可以根据需要开辟内存单元.链表有一个“头指针”变量,以head表示,它存放一个地址.该地址指向一个元素.链表中每一个元素称 ...

  10. HTML5性能优化[转]

    在看完这两章内容之后,我意犹未尽,于是乎从网上搜索关键字“Java Web高性能”,在IBM社区找到两篇不错的文章,而让人更意外的是我发现那两篇文章的内容跟<高性能HTML5>前两章高度相 ...