最短路之Floyd算法
1.介绍
floyd算法只有五行代码,代码简单,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3),可以求多源最短路问题。
2.思想:
Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。
举个例子:已知下图,
如现在只允许经过1号顶点,求任意两点之间的最短路程,只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。
for(i=; i<=n; i++)
{
for(j=; j<=n; j++)
{
if ( e[i][j] > e[i][]+e[][j] )
e[i][j] = e[i][]+e[][j];
}
}
接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。
//经过1号顶点
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if (e[i][j] > e[i][]+e[][j])
e[i][j]=e[i][]+e[][j];
//经过2号顶点
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if (e[i][j] > e[i][]+e[][j])
e[i][j]=e[i][]+e[][j];
最后允许通过所有顶点作为中转,代码如下:
for(k=; k<=n; k++)
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。与上面相同
3.代码模板:
#include <stdio.h>
#define inf 0x3f3f3f3f
int map[][];
int main()
{
int k,i,j,n,m;
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m); //初始化
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(i==j)
map[i][j]=;
else
map[i][j]=inf;
int a,b,c;
//读入边
for(i=; i<=m; i++)
{
scanf("%d %d %d",&a,&b,&c);
map[a][b]=c;//这是一个有向图
} //Floyd-Warshall算法核心语句
for(k=; k<=n; k++)
for(i=; i<=n; i++)
for(j=; j<=n; j++)
if(map[i][j]>map[i][k]+map[k][j] )
map[i][j]=map[i][k]+map[k][j]; //输出最终的结果,最终二维数组中存的即使两点之间的最短距离
for(i=; i<=n; i++)
{
for(j=; j<=n; j++)
{
printf("%10d",map[i][j]);
}
printf("\n");
}
return ;
}
最短路之Floyd算法的更多相关文章
- HDOJ 1217 Arbitrage(拟最短路,floyd算法)
Arbitrage Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- 最短路 之 floyd 算法
Floyd 在我认为这是最短路算法中最简单的一个,也是最low的一个. 所以我们组一位大佬给他起了一个新的名字,叫做超时!!! (其实如果数据范围很小的话,这个算法还是蛮好用的!!) 这个算法比较简单 ...
- 21.多源最短路(floyd算法)
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 已知n个点(n<=100),给你n*n的方阵,a[i,j] ...
- 最短路,floyd算法,图的最短路径
题目描述: 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线 ...
- 图论算法(二)最短路算法:Floyd算法!
最短路算法(一) 最短路算法有三种形态:Floyd算法,Shortset Path Fast Algorithm(SPFA)算法,Dijkstra算法. 我个人打算分三次把这三个算法介绍完. (毕竟写 ...
- (poj 3660) Cow Contest (floyd算法+传递闭包)
题目链接:http://poj.org/problem?id=3660 Description N ( ≤ N ≤ ) cows, conveniently numbered ..N, are par ...
- 最短路--floyd算法模板
floyd算法是求所有点之间的最短路的,复杂度O(n3)代码简单是最大特色 #include<stdio.h> #include<string.h> ; const int I ...
- 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法
图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...
- 多源最短路Floyd 算法————matlab实现
弗洛伊德(Floyd)算法是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计 ...
随机推荐
- vue中使用stompjs实现mqtt消息推送通知
最近在研究vue+webAPI进行前后端分离,在一些如前端定时循环请求后台接口判断状态等应用场景用使用mqtt进行主动的消息推送能够很大程度的减小服务端接口的压力,提高系统的效率,而且可以利用mqtt ...
- wildfly10报错2:ID注释有错
13:55:56,612 INFO [org.jboss.modules] (main) JBoss Modules version 1.5.1.Final 13:55:56,891 INFO [or ...
- C# 短信发送 邮件发送
兴趣是最好的老师. --爱因斯坦 一.实现短信发送 1.使用短信mao的方式进行短信发送,前提要购买硬件设备,这里就不考虑展示了: 2.使用中国网建提供的短信平台,但是用几次后要收费: 我们这里主要介 ...
- java中得到图片的宽度 高度:
java中得到图片的宽度 高度:BufferedImage srcImage = null;srcImage = ImageIO.read(new File(srcImagePath));int sr ...
- php防止浏览器点击返回按钮重复提交数据
<!--html中存放隐藏域数据--> <input type="hidden" value='{$sun_nums}' name='sub_nums' /> ...
- hive集成sentry的sql使用语法
Sentry权限控制通过Beeline(Hiveserver2 SQL 命令行接口)输入Grant 和 Revoke语句来配置.语法跟现在的一些主流的关系数据库很相似.需要注意的是:当sentry服务 ...
- spring aop + xmemcached 配置service层缓存策略
Memcached 作用与使用 基本介绍 1,对于缓存的存取方式,简言之,就是以键值对的形式将数据保存在内存中.在日常业务中涉及的操作无非就是增删改查.加入缓存机制后,查询的时候,对数据进行缓存,增删 ...
- 【Android Developers Training】 27. 序言:和其它应用交互
注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...
- Python3中的模块
模块使用哪种语言实现并不重要,因为所有的模块导入与使用的方式都相同. 1.常用模块导入格式: import importable1,importable2,... import importable ...
- VMvare虚拟机的安装及新建虚拟机.
一.VMvare虚拟机的安装 1.首先双击--你下载的安装包,这里我分享百度云盘,供大家下载:http://pan.baidu.com/s/1jImQSZG 2.VMware Workstation ...