题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3529

挺恶心的数论TAT。。。

设f[i]是i的约数和,这个可以nln(n)扫出来。

ans=∑d[n/d]*[m/d]*∑i|d f[i]*μ[d/i]

然后由于只有f[i]<=a是有用的,所以对给的a从小到大排序,对求的f[i]从小到大排序,用个树状数组维护一下。

由于分块思想,可以枚举d,然后会出现一段n/i是一样的,所以把那部分区间求和就可以了。

#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdio>
#define rep(i,l,r) for (int i=l;i<=r;i++)
#define down(i,l,r) for (int i=l;i>=r;i--)
#define clr(x,y) memset(x,y,sizeof(x))
#define inf 1000000009
#define ll long long
#define maxn 100500
#define mm 2147483648
#define low(x) (x&(-x))
using namespace std;
struct data{int a,n,m,b,id;
}a[maxn];
struct node{int a;int b;
}f[maxn];
int tot,mx,T,b[maxn],pri[maxn],mu[maxn],ans[maxn];
int t[maxn];
int read(){
int x=,f=; char ch=getchar();
while (!isdigit(ch)){if (ch=='-') f=-; ch=getchar();}
while (isdigit(ch)){x=x*+ch-''; ch=getchar();}
return x*f;
}
bool cmpa(data a,data b){
return a.a<b.a;
}
bool cmp(node a,node b){
return a.a<b.a;
}
void pre(){
mu[]=;
rep(i,,mx){
if (!b[i]) b[i]=,pri[++tot]=i,mu[i]=-;
rep(j,,tot)if (i*pri[j]<=mx){
b[i*pri[j]]=;
if (i%pri[j]==) {mu[i*pri[j]]=; break;}
else mu[i*pri[j]]=-mu[i];
}
else break;
}
rep(i,,mx)
for (int j=i;j<=mx;j+=i) f[j].a+=i;
rep(i,,mx) f[i].b=i;
}
void add(int x,int y){
while (x<=mx){
t[x]+=y; x+=low(x);
}
}
int ask(int x){
int ans=;
while (x){
ans+=t[x];
x-=low(x);
}
return ans;
}
void solve(int id){
int n=a[id].n,m=a[id].m;
for (int i=,j;i<=n;i=j+){
j=min(n/(n/i),m/(m/i));
ans[a[id].id]+=(n/i)*(m/i)*(ask(j)-ask(i-));
}
}
int main(){
int q=read();
rep(i,,q){
a[i].n=read(); a[i].m=read(); a[i].a=read(); a[i].id=i;
if (a[i].n>a[i].m) swap(a[i].n,a[i].m);
mx=max(mx,a[i].n);
}
pre();
sort(a+,a++q,cmpa);
sort(f+,f++mx,cmp);
int now=;
rep(i,,q){
while (f[now].a<=a[i].a&&now<=mx){
for (int j=f[now].b;j<=mx;j+=f[now].b){
add(j,f[now].a*mu[j/f[now].b]);
}
now++;
}
solve(i);
}
rep(i,,q) printf("%d\n",ans[i]&0x7fffffff);
return ;
}

BZOJ3529: [Sdoi2014]数表的更多相关文章

  1. [bzoj3529][Sdoi2014]数表_树状数组_莫比乌斯反演

    数表 bzoj-3529 Sdoi-2014 题目大意:n*m的数表,第i行第j列的数是同时整除i和j的所有自然数之和.给定a,求数表中所有不超过a的和. 注释:$1\le n,m \le 10^5$ ...

  2. BZOJ3529 [Sdoi2014]数表 【莫比乌斯反演】

    3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2151 Solved: 1080 [Submit][Status ...

  3. bzoj千题计划205:bzoj3529: [Sdoi2014]数表

    http://www.lydsy.com/JudgeOnline/problem.php?id=3529 有一张n*m的数表,其第i行第j列(1 < =i < =n,1 < =j & ...

  4. BZOJ3529 [Sdoi2014]数表【莫比乌斯反演】

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

  5. 莫比乌斯反演套路二--(n/d)(m/d)给提出来--BZOJ3529: [Sdoi2014]数表

    一个数表上第i行第j列表示能同时整除i和j的自然数,Q<=2e4个询问,每次问表上1<=x<=n,1<=y<=m区域内所有<=a的数之和.n,m<=1e5,a ...

  6. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演,离线)

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

  7. bzoj3529: [Sdoi2014]数表 莫比乌斯反演

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...

  8. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)

    题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...

  9. 题解【bzoj3529 [SDOI2014]数表】

    Description \(T\) 组询问,定义 \(F(n)=\sum\limits_{d|n}d\).每次给出 \(n,m,a\) 求 \[\sum\limits_{i=1,j=1,F(\gcd( ...

随机推荐

  1. JDK源码阅读(1)_简介+ java.io

    1.简介 针对这一个版块,主要做一个java8的源码阅读笔记.会对一些在javaWeb中应用比较广泛的java包进行精读,附上注释.对于容易混淆的知识点给出相应的对比分析. 精读的源码顺序主要如下: ...

  2. nginx取结构体地址

    linux内核提供了一个container_of()宏,可以根据结构体某个成员的地址找到父结构的地址. #define container_of(ptr, type, member) ({ \ con ...

  3. Spring入门篇总结:

    本文是对慕课网上"搞定SSM开发"路径的系列课程的总结,详细的项目文档和课程总结放在github上了.点击查看 视频传送门:Spring入门篇 该门课程主要从Spring的Bean ...

  4. ArcGIS 网络分析[2.4] OD成本矩阵

    什么是OD成本矩阵? 先不说这个东西是什么,我们还是举一个实际的例子: 现在存在3个城市北京.上海.武汉,请分析他们两两之间的通行时间. 很简单嘛!北京到上海,北京到武汉,上海到武汉都来一次最短路径分 ...

  5. BZOJ2001 HNOI2010 城市建设

    题目大意:动态最小生成树,可以离线,每次修改后回答,点数20000,边和修改都是50000. 顾昱洲是真的神:顾昱洲_浅谈一类分治算法 链接: https://pan.baidu.com/s/1c2l ...

  6. Disruptor并发框架(一)简介&上手demo

    框架简介 Martin Fowler在自己网站上写了一篇LMAX架构的文章,在文章中他介绍了LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易.这个系统是建立在JVM平台上,其核心是一 ...

  7. java RTTI笔记 之Class学习笔记(摘自java编程思想)

    1.java 使用Class对象来执行其RTTI.java 中每个类在编译后都会对应产生一个Class对象(更恰当地说是被保存在一个同名的.class文件中),甚至void和基本类型也都对应一个cla ...

  8. Fiddler 抓包https配置 提示creation of the root certificate was not successful 证书安装不成功

    在使用Fiddler抓包时,我们有时需要抓https协议的包,这种需要配置一下 开启监控https才可以 首先 找到Tools——>Options 在弹出的菜单中 选择https项  勾选捕捉h ...

  9. C# 全选中数字文本框内容

    /// <summary>        /// 全选中数字文本框内容        /// </summary>        /// <param name=&quo ...

  10. Url Rewrite 再说Url 重写

    前几天看到园子里一篇关于 Url 重写的文章<获取ISAPI_Rewrite重写后的URL>, URL-Rewrite 这项技术早已不是一项新技术了,这个话题也已经被很多人讨论过多次.搜索 ...