cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记
(没太听明白,以后再听)
1. 如何欺骗神经网络?
这部分研究最开始是想探究神经网络到底是如何工作的。结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案。比如下图,左边的熊猫被识别成熊猫,但是加上中间的小“噪音”一样的数值,右图的熊猫就识别不出来了。而且这个小“噪音”不是随机的,它更像是offset,是某种系统误差,叠加到图片上去,总是可以欺骗神经网络。
2. 神经网络从权重到输出的映射是非线性的,非常复杂,非常难优化、训练。但是从输入到输出的映射可以看成线性的,是可以预测的,优化出输入要比优化出权重容易得多。可以利用输入到输出的线性关系,很方便地生成可以欺骗(或者叫攻击)神经网络的样例。
FGSM (Fast Gradient Step Method):一种对抗方法。这个方法的核心思想是在每一步优化的过程中加入少量噪声,让预测结果朝目标类别偏移,或者如你所愿远离正确的类别。
Transferability Attack:在自己的网络上找到攻击样例,这个样例往往也能攻破其他神经网络。
3. 对抗样例可以用来训练网络得到更好的效果。
4. 总结
cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记的更多相关文章
- cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training
(没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...
- Generating Adversarial Examples with Adversarial Networks
目录 概 主要内容 black-box 拓展 Xiao C, Li B, Zhu J, et al. Generating Adversarial Examples with Adversarial ...
- cs231n spring 2017 lecture9 CNN Architectures 听课笔记
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
- cs231n spring 2017 lecture9 CNN Architectures
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
- cs231n spring 2017 lecture13 Generative Models 听课笔记
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
- cs231n spring 2017 lecture13 Generative Models
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
- cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记
1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"." ...
- cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 Python/Numpy基础 (1)
本文使根据CS231n的讲义整理而成(http://cs231n.github.io/python-numpy-tutorial/),以下内容基于Python3. 1. 基本数据类型:可以用 prin ...
随机推荐
- Bootstrap学习笔记(二)---常见工具和流程导航范例
使用bootstrap框架避免不了写CSS,当CSS文件较大时,会发现维护起来很麻烦,一些默认值,如行高.背景色.标注颜色.字号等信息往往反复出现,还有一些大体上一致,只有小部分不同的样式定义,这就需 ...
- lua中怎么替换掉字符串中的$^特殊字符?
Lua 常规替换字符串如何替换 s = string.gsub("Lua is good", "good", "bad") print(s) ...
- JS中数组的迭代方法和归并方法
昨天总结的JavaScript中的数组Array方法 数组的迭代方法 ES5中为数组定义了5个迭代方法.每个方法都要接收两个参数:要在每一项上面运行的函数和(可选的)运行该函数的作用域对象---影响t ...
- Java并发编程之ThreadLocal源码分析
## 1 一句话概括ThreadLocal<font face="微软雅黑" size=4> 什么是ThreadLocal?顾名思义:线程本地变量,它为每个使用该对象 ...
- 阅读MDN文档之CSS选择器介绍(一)
本文为阅读MDN文档笔记 目录 Different types of Selectors Attribute Selectors Presence and value attribute select ...
- 微信公众号开发——通过ffmpeg解决amr文件无法播放问题
今天刚好碰到个需求,要在微信浏览器中实现录音,并在其他页面上播放.录音功能本身是JS SDK的功能,倒没啥问题,然而录音的文件保存下来是amr格式,而IOS的浏览器没法播放amr(据说微信浏览器的vi ...
- Linux 文本编辑器vi命令
1.Vim Vim 是一个功能强大的全屏幕文本编辑器,是 Linux/UNIX 上最常用的文本编辑器,它的作用是建立.编辑.显示文本文件. Vim 没有菜单,只有命令 2.Vim 工作模式 3.插入 ...
- Jasperreports以及iReport4.5报表PDF导出字体完美解决方案
在使用Jasperreports以及iReport设计报表时,导出PDF是一个常见的需求.网上解决PDF导出中文显示问题相关的文章很多,无非就是设置控件的pdf font name和pdf encod ...
- MySQL数据库学习: 02 —— 数据库的安装与配置
MySQL安装图解 一.MYSQL的安装 1.打开下载的mysql安装文件mysql-5.0.27-win32.zip,双击解压缩,运行“setup. ...
- 【官方文档】Nginx模块Nginx-Rtmp-Module学习笔记(三)流式播放Live HLS视频
源码地址:https://github.com/Tinywan/PHP_Experience HTTP Live Streaming(HLS)是由Apple Inc.实施的非常强大的流视频协议.HLS ...