题目链接详见SCNU 2015新生网络赛 1006. 3D打印 。出题思路来自codevs 3288. 积木大赛,属于模拟题。
 
      首先我们把“选择从第L部分到第R部分”理解为“选择一段连续的部分”,OK,基本题意为:给定N个部件的高度,每次可以给连续的一段增加高度$1$,问至少需要几次增加高度的操作?
 
      不少人认为,直接模拟这个操作,循环给它$+1$,数加几次能达到要求高度就可以了。但很可惜这是会超时TLE哒。我们考虑极端情况,总共有$10^{5}$个部分,高度$h_{i}$是$0$和$10^{5}$相间的,这样总共需要$\frac {10^{5}} {2} \times 10^{5} = 5 \times 10^{9}$次操作,复杂度为$O(NH)$,也就是说很可能一些同学的做法,会要进行$5 \times 10^{9}$次的循环,运行结果同样也是$5 \times 10^{9}$,不但超时,而且还超了$int$整型的范围。当然良心出题人并没有把这组数据放进去,数据做了奇怪的限定能保证结果不超过$int$,否则你应该需要拿long long__int64来存放结果(32位机下$int$和$long$都是$4$字节,一样的范围)。
 
      那怎么办呢?我们可以发现,如果$h_{i} > h_{i-1}$,那么总操作次数应要加上$h_{i} - h_{i-1}$,因为假定我在到达前面高度为$h_{i-1}$的部分的时候,已经总共操作了$t_{1}$次,如果当前部分比前面的还高,那么这个部分的下面$h_{i-1}$的高度已经被前面的操作完成了(尽量选择连续的一段增加高度),于是这里我只剩下了$t_{2} = h_{i} - h_{i-1}$的高度未完成。如果$h_{i} \leq h_{i-1}$,则前面的操作肯定也把这部分顺便完成了,因此不需要再次计算。由于每次只需要比较$h_{i}$和$h_{i-1}$的大小关系,前面比较过的与后面的无关,所以只需要一个循环把数组遍历一次就可以了,复杂度为$O(N)$。
 
      代码如下(我是在读入的时候就完成判断,因此不需要数组保存了):
 #include <stdio.h>

 int main() {
int T, N;
scanf("%d", &T);
while(T--) {
int t = , x;
long long res = ;
scanf("%d", &N);
for(int i=; i<N; i++) {
scanf("%d", &x);
if(x>t) res += x-t;
t = x;
}
printf("%I64d\n", res);
}
return ;
}
 
      在提交的代码中发现有同学想到了另一种方法,即寻找极大极小值的做法,复杂度同样为$O(N)$。比如我先找到一个极小值$rmin$,往后面找到一个极大值$rmax$,这样总次数只需加上$rmax - rmin$即可,因为极小值前面的部分已经计算过了,只需要考虑极小值到极大值之间的操作次数就好了。当然一开始时极小值为$0$,遍历结束后也要注意加上还没计算的部分,略微麻烦点,留给大家思考。
 
      附:数据生成程序如下:
 #include <stdio.h>
#include <random>
using namespace std;
default_random_engine g1;
default_random_engine g2;
lognormal_distribution<double> lognDis(, );
uniform_int_distribution<int> uiDis(, 1E5); int main() {
freopen("in.txt", "w+", stdout);
int T = ;
printf("%d\n", T);
while(T--) {
int N = lognDis(g1);
if(N>1E5) N%=int(1E5);
printf("%d\n", N);
for(int i=; i<N; i++) {
int Hi = uiDis(g2);
printf("%d ", Hi);
}
puts("");
}
return ;
}

Click To

 

SCNU 2015ACM新生赛初赛【1006. 3D打印】解题报告的更多相关文章

  1. SCNU 2015ACM新生赛初赛【1007. ZLM的扑克牌】解题报告

            题目链接详见SCNU 2015新生网络赛 1007. ZLM的扑克牌 .         其实我在想这题的时候,还想过要不要设置求最小的排列,并且对于回文数字的话,可以把扑克牌折起来( ...

  2. SCNU 2015ACM新生赛初赛【1001~1011】个人解题思路

            题目1001:       大意:已知$n$个角色,$m$种怪物种族,$k$个怪物,给出一组角色编号,编号$P_{i}$的角色能肝死编号$i$的怪物,对于给定的一组怪物编号,为了打通关 ...

  3. SCNU 2015ACM新生赛决赛【F. Oyk闯机关】解题报告

            题目大意:一个$N$$\times$$N$的阵列,每个格子有$X_{ij}$个调和之音,若每次只能选择走右边或下边,从左上角出发走到右下角,问最多能收集到多少个调和之音?       ...

  4. SCNU ACM 2016新生赛初赛 解题报告

    新生初赛题目.解题思路.参考代码一览 1001. 无聊的日常 Problem Description 两位小朋友小A和小B无聊时玩了个游戏,在限定时间内说出一排数字,那边说出的数大就赢,你的工作是帮他 ...

  5. 2013级新生程序设计基础竞赛-正式赛 F 异或最大值 解题报告

    F - 异或最大值 Time Limit: 2000/1000MS (Java/Others)      Memory Limit: 128000/64000KB (Java/Others) Subm ...

  6. LeetCode 892 Surface Area of 3D Shapes 解题报告

    题目要求 On a N * N grid, we place some 1 * 1 * 1 cubes. Each value v = grid[i][j] represents a tower of ...

  7. 【LeetCode】892. Surface Area of 3D Shapes 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  8. LeetCode 883 Projection Area of 3D Shapes 解题报告

    题目要求 On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes. ...

  9. 安徽师大附中%你赛day5 T3 树上行走 解题报告

    树上行走 题目背景 \(\mathrm{Smart}\) 的脑洞非常大, 经常幻想出一些奇怪的东西. 题目描述 某一天,\(\mathrm{Smart}\) 幻想出了一棵没有边际的二叉树,脑补着在那棵 ...

随机推荐

  1. jQuery之常用且重要方法梳理(siblings,nextAll,end,wrap,apply,call,each)-(二)

    1.siblings() siblings() 获得匹配集合中每个元素的同胞,通过选择器进行筛选是可选的. <body> <div><span>Hello</ ...

  2. SQL Tuning 基础概述05 - Oracle 索引类型及介绍

    一.B-Tree索引 三大特点:高度较低.存储列值.结构有序 1.1利用索引特性进行优化 外键上建立索引:不但可以提升查询效率,而且可以有效避免锁的竞争(外键所在表delete记录未提交,主键所在表会 ...

  3. web开发调试神器——fiddler的使用

    好累 以后再写 http://docs.telerik.com/fiddler/knowledgebase/autoresponder

  4. 【分布式】Zookeeper序列化及通信协议

    一.前言 前面介绍了Zookeeper的系统模型,下面进一步学习Zookeeper的底层序列化机制,Zookeeper的客户端与服务端之间会进行一系列的网络通信来实现数据传输,Zookeeper使用J ...

  5. java设计模式之简单工厂模式

    简单工厂: 简单工厂的优点: 1.去除客户端与具体产品的耦合,在客户端与具体的产品中增加一个工厂类,增加客户端与工厂类的耦合 2.封装工厂类,实现代码平台的复用性,创建对象的过程被封装成工厂类,可以多 ...

  6. 你所不知道的linq(二)

    上一篇说了from in select的本质,具体参见你所不知道的linq.本篇说下from...in... from... in... select 首先上一段代码,猜猜结果是什么? class P ...

  7. spring笔记6 spring IOC的中级知识

    1,spring ioc的整体流程,xml配置 spring ioc初始化的流程结合上图 步骤编号 完成的工作 1 spring容器读取配置文件,解析称注册表 2 根据注册表,找到相应的bean实现类 ...

  8. Hibernate全套增删改查+分页

    1.创建一个web工程 2.导入jar包 3.创建Student表 4.创建实体类 package com.entity; public class Student { private Integer ...

  9. JS 传播事件、取消事件默认行为、阻止事件传播

    1.事件处理程序的返回值 通常情况下,返回值false就是告诉浏览器不要执行这个事件相关的默认操作.例如,表单提交按钮的onclick事件处理程序能通过返回false阻止浏览器提交表单,再如a标签的o ...

  10. px、dp和sp,这些单位有什么区别?

    DP 这个是最常用但也最难理解的尺寸单位.它与“像素密度”密切相关,所以 首先我们解释一下什么是像素密度.假设有一部手机,屏幕的物理尺寸为1.5英寸x2英寸,屏幕分辨率为240x320,则我们可以计算 ...