博弈论(Game Theory) - 04 - 纳什均衡
博弈论(Game Theory) - 04 - 纳什均衡
开始
纳什均衡和最大最小定理是博弈论的两大基石。
博弈不仅仅是对抗,也包括合作和迁就,纳什均衡能够解决这些问题,提供了在数学上一个完美的理论。
纳什均衡的中心思想是主动选择一个对大家都有利的战略,迫使其他玩家选择相同的战略组合。
纳什均衡
示例
这里,我们使用“战略式”表述,如下:
B | ||||
---|---|---|---|---|
L | M | R | ||
A | U | 3,2 | 4,7 | 5,1 |
H | 6,1 | 2,8 | 1,1 | |
D | 3,7 | 8,9 | 10, 4 |
纯战略纳什均衡的划线法
注:我用红色代替了划线。
在玩家A的每一个战略中,找到玩家B的最大支付,并在其下面划线。
比如:玩家A的战略U中,玩家B的最大支付是7。
然后
在玩家B的每一个战略中,找到玩家A的最大支付,并在其下面划线。
最后,都有划线的战略组合就是纯战略纳什均衡。
概念
- 纳什均衡
对于n人战略式表述博弈\(G = \{ S_1, \cdots, S_n; u_1, \cdots, u_n\}\),若战略组合\(s^*=(s_1^*, \cdots, s_n^*)\)满足如下条件,则称\(s^*\)是一个纳什均衡:
\(u_1(s_i^*, s_{-1}^*) \ge u_1(s_i, s_{-1}^*) \ \forall s_i \in S_i, i-1, \cdots, n\)
或者用另一种表达方式:当且仅当\(s_i^*\)是下述最大化问题的解时,\(s^*\)是一个纳什均衡
\(s_i^* = \underset{s_i}{argmax} \ u_i(s_1^*, \cdots, s_{i-1}^*, s_i, s_{i+1}^*, \cdots, s_n^*), \ i=1, \cdots, n; s_i \in S_i\)
纳什均衡的含义是说:当局中人在某一选定的战略组合下都没有积极性偏离各自已选定的战略时,该战略组合就构成一个纳什均衡。
纳什均衡对应的战略组合是:战略组合的每个特定玩家策略都是(当其他玩家做出这个战略组合对应的选择时)其最优解。
参考
- 博弈论与经济模型, 蒲勇健。
博弈论(Game Theory) - 04 - 纳什均衡的更多相关文章
- 博弈论(Game Theory) - 04 - 纳什均衡
博弈论(Game Theory) - 04 - 纳什均衡 开始 纳什均衡和最大最小定理是博弈论的两大基石. 博弈不仅仅是对抗,也包括合作和迁就,纳什均衡能够解决这些问题,提供了在数学上一个完美的理论. ...
- 博弈论(Game Theory) - 01 - 前传之占优战略均衡
博弈论(Game Theory) - 01 - 前传之占优战略均衡 开始 我们现在准备攀爬博弈论的几座高峰. 我们先看看在纳什均衡产生之前,博弈论的发展情况. 我们的第一座高峰是占优战略均衡. 囚徒困 ...
- 博弈论(Game Theory) - 02 - 前传之重复剔除严格劣战略的占优战略均衡
博弈论(Game Theory) - 02 - 前传之重复剔除严格劣战略的占优战略均衡 开始 "重复剔除劣战略的严格占优战略均衡"(iterated dominance equil ...
- 博弈论(Game Theory) - 03 - 前传之最大最小均衡
博弈论(Game Theory) - 03 - 前传之最大最小均衡 开始 最大最小均衡是由人冯·诺依曼和摩根斯坦提出.冯·诺依曼和摩根斯坦也被认为是博弈论的创始人. 冯·诺依曼提出的"最大最 ...
- hihocoder 1154 Spring Outing
传送门 #1154 : Spring Outing 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 You class are planning for a spring ...
- 竞价拍卖理论的介绍(RTB模型中使用第二竞价模型,为的是纳什平衡,保护所有多方利益)
英式拍卖 是最普通的拍卖方式,其形式是拍卖过程中,竞价按阶梯,从低到高,依次递增.最终由出价最高者获得拍卖物品(竞买人变成买受人). The first price auction: a form o ...
- 第18月第22天 机器学习first
1.网易公开课 机器学习 http://open.163.com/special/opencourse/machinelearning.html https://github.com/search ...
- 清华EMBA课程系列思考之六 -- 比較文明视野下的中华领导智慧、企业管理与经济解析
告别马年的最后一缕阳光,踏着猴年的钟声,度过了温馨的春节,已然开启了新学期的第一堂课.看题目其貌不扬,但一旦进入课堂,已然聚精会神.唯恐掉队,就请大家跟我一起进入四天的心路修炼旅程,開始我们的新一期思 ...
- 游戏引擎架构 (Jason Gregory 著)
第一部分 基础 第1章 导论 (已看) 第2章 专业工具 (已看) 第3章 游戏软件工程基础 (已看) 第4章 游戏所需的三维数学 (已看) 第二部分 低阶引擎系统 第5章 游戏支持系统 (已看) 第 ...
随机推荐
- web works importScripts
html: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <tit ...
- golang的http分析
首先,要认识一个贯穿始终的接口http.Handler type Handler interface { ServeHTTP(ResponseWriter, *Request) } 其中,两个参数 ...
- Android之利用正则表达式校验邮箱、手机号、密码、身份证号码等
概述 现在Android应用在注册的时候基本会校验邮箱.手机号.密码.身份证号码其中一项或多项,特此收集了相关的正则表达式给大家分享.除了正则表达式,文章末尾提供Demo中有惊喜哦! 具体验证的图片效 ...
- 第一个python爬虫程序
1.安装Python环境 官网https://www.python.org/下载与操作系统匹配的安装程序,安装并配置环境变量 2.IntelliJ Idea安装Python插件 我用的idea,在工具 ...
- java开发中经典的三大框架SSH
首先我们要明白什么是框架为什么用?相信一开始学习编程的时候都会听到什么.什么框架之类的:首先框架是一个软件半成品,都会预先实现一些通用功能,使用框架直接应用这些通用功能而不用重新实现,所以大多数企业都 ...
- Influxdb1.2.2安装_Windows
一.文件准备 1.1 文件名称 influxdb-1.2.2_windows_amd64.zip 1.2 下载地址 https://portal.influxdata.com/downloads [注 ...
- 1102: 零起点学算法09——继续练习简单的输入和计算(a-b)
1102: 零起点学算法09--继续练习简单的输入和计算(a-b) Time Limit: 1 Sec Memory Limit: 520 MB 64bit IO Format: %lldSub ...
- 在jsp中用一数组存储了数据库表中某一字段的值,然后在页面中输出其中的值。
List<String> list = new ArrayList<String>(); String sql = "select userName from us ...
- 原生JS跨浏览器事件封装处理
引子:用javascript给元素绑定事件,我们可以用addEventListener这个方法,然而这个方法有兼容问题,比如在IE浏览器上面就无效,在IE上面要用attachEvent这个方法 一.a ...
- 讨论LSTM和RNN梯度消失问题
1RNN为什么会有梯度消失问题 (1)沿时间反向方向:t-n时刻梯度=t时刻梯度* π(W*激活函数的导数)