X mod f(x)

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2792    Accepted Submission(s): 1101

Problem Description
Here is a function f(x):
   int f ( int x ) {
    if ( x == 0 ) return 0;
    return f ( x / 10 ) + x % 10;
   }

   Now, you want to know, in a given interval [A, B] (1 <= A <= B <= 109), how many integer x that mod f(x) equal to 0.

 
Input
   The first line has an integer T (1 <= T <= 50), indicate the number of test cases.
   Each test case has two integers A, B.
 
Output
   For each test case, output only one line containing the case number and an integer indicated the number of x.
 
Sample Input
2
1 10
11 20
 
Sample Output
Case 1: 10
Case 2: 3
 
Author
WHU
 
Source
 
/*题意:计算区间内一个数字各位之和能整除该数字的个数
思路:分别计算出[1, b]中符合条件的个数和[1, a-1]中符合条件的个数。
d[l][i][j][k]表示前l位和为i模j的结果为k的数的个数,那么就有方程
d[l+1][i+x][j][(k*10+x)%j] += d[l][i][j][k]
预处理出d[l][i][j][k],然后再逐位统计即可。*/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std; int bit[];
int dp[][][][];
//d[l][i][j][k]表示前l位和为i模j的结果为k的数的个数
void set()//打表预处理出来你需要的数据
{
int i,j,k,l,x;
for(i = ; i<=; i++)
dp[][][i][] = ;
for(l = ; l<; l++)//枚举的是前l位
for(i = ; i<=l*; i++)//枚举的是当前和,最大和是l*9
for(j = ; j<=; j++)//不可能比81还大,总共才九位数,总和最大就是81,j>81的话得到的就是自己了
for(k = ; k<j; k++)
for(x = ; x<=; x++)//枚举的是当前位上的数
dp[l+][i+x][j][(k*+x)%j] += dp[l][i][j][k];
} //这个(k*10+x)%j是什么意思 //这个状态是前一个状态,位数比等号左边的少一位
//为什么要用k*10+x来模j呐
//因为吧,原来求的是前l位的和,
//现在求得是l+1位的和了,以前的位数
//都向左移动了一位
int solve(int n)
{
if(!n)
return ;
int ans,i,j,k,len;
int sum,tem1,tem2,s,bit[],r;
len = sum = ans = ;
tem1 = tem2 = n;
s = ;
while(tem1)//求每位数之和
{
bit[++len]=tem1%;
tem1/=;
sum+=bit[len];//每位数之和
}
if(n%sum==)//本身要先看是否整除
ans++;
for(i=;i<=len;i++)//前i位
{
sum-=bit[i];//将该位清0
tem2/=;//现在个数是没有个位的
s*=;
tem1=tem2*s;//现在这个数个位上的数是零
for(j=;j<bit[i];j++)//枚举该位的状况(就是遍历这个位上的数)
{
for(k=sum+j;k<=sum+j+*(i-);k++) //该位与更高位的和,而比该位低的和择优9*(i-1)种
{//9*(i-1)因为你枚举每多一位枚举的数字就会多出来9个
if(!k)//和为0的状况不符合
continue;
r=tem1%k;//这里是要保证你枚举到的前i位再加上没枚举到那些位加起来不会超过原来的数
if(r)
r=k-r;//余数大于0,那么k-r得到的数肯定能被k整除
ans+=dp[i-][k-sum-j][k][r];//加上个数
}
tem1+=s/;//标记现在算到哪里,例如1234,一开始t是1230,然后1231,1232,1233,1234,接下来1200,就是1210,1220,1230
}
}
return ans;
} int main()
{
//freopen("in.txt","r",stdin);
int T,l,r,cas = ;
set();//先打表,半打表,将前l位,位数之和是i,并且模上j之后得到k的个数有多少
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&l,&r);
printf("Case %d: %d\n",cas++,solve(r)-solve(l-));
}
return ;
}

自己又写了一遍,虽然都差不多,但是自己写一遍理清了思路

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#define N 10
#define M 82
using namespace std;
int dp[N][M][M][M],g[N];//dp[l][i][j][k]表示前l位的和为i 模上j得数是k的数有多少个
void inti()
{
for(int i=;i<=;i++)
dp[][][i][]=;
//cout<<"ok"<<endl;
for(int l=;l<;l++)//枚举的前l位
for(int i=;i<=l*;i++)//枚举的前l位的和
for(int j=;j<=;j++)//枚举的是你要模的那个数
for(int k=;k<j;k++)//枚举的是模完的结果
for(int x=;x<;x++)//枚举的第l+1位
dp[l+][i+x][j][(k*+x)%j]+=dp[l][i][j][k];
//cout<<"ok"<<endl;
//cout<<"ok"<<endl;
}
int solve(int n)
{
if(!n) return ;
int s,tem1,tem2,sum=,r;
tem1=tem2=n;
s=;
int len=;
while(tem1)
{
g[++len]=tem1%;
tem1/=;
sum+=g[len];
}//分离各位,并且求出来和
int cur=;
if(n%sum==)
cur++;
for(int i=;i<=len;i++)//模拟的是前i位
{
sum-=g[i];//先把这一位清零
tem2/=;
s*=;
tem1=s*tem2;
for(int j=;j<g[i];j++)//枚举的是这个位上的数
{
for(int k=sum+j;k<=sum+j+*(i-);k++)//模拟的是你要模的那个数
{
if(!k) continue;//如果k==0不符合条件
r=tem1%k;
if(r)
r=k-r;
cur+=dp[i-][k-sum-j][k][r];
//cout<<"cur="<<cur<<endl;
//cout<<"dp[i-1][k-sum-j][k][r]="<<dp[i-1][k-sum-j][k][r]<<endl;
}
tem1+=s/;
}
}
return cur;
}
int main()
{
//freopen("in.txt","r",stdin);
//cout<<"ok"<<endl;
inti();
int t,l,r;
scanf("%d",&t);
//cout<<t<<endl;
for(int i=;i<=t;i++)
{
scanf("%d%d",&l,&r);
//cout<<l<<" "<<r<<endl;
printf("Case %d: %d\n",i,solve(r)-solve(l-));
}
return ;
}

HDU X mod f(x)(题解注释)的更多相关文章

  1. HDU - 4389 X mod f(x)(数位dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=4389 题意 为[A,B] 区间内的数能刚好被其位数和整除的数有多少个. 分析 典型的数位dp...比赛时想不出状 ...

  2. HDU 4389——X mod f(x)(数位DP)

    X mod f(x) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

  3. HDOJ 4389 X mod f(x)

    数位DP........ X mod f(x) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  4. HDU4389:X mod f(x)(数位DP)

    Problem Description Here is a function f(x): int f ( int x ) { if ( x == 0 ) return 0; return f ( x ...

  5. hdu 4389 X mod f(x) 数位DP

    思路: 每次枚举数字和也就是取模的f(x),这样方便计算. 其他就是基本的数位Dp了. 代码如下: #include<iostream> #include<stdio.h> # ...

  6. HDU 4389 X mod f(x)

    题意:求[A,B]内有多少个数,满足x % f(x) == 0. 解法:数位DP.转化为ans = solve(b) - solve(a - 1).设dp[i][sum][mod][r]表示长度为i, ...

  7. HDU 2157 How many ways?? 题解

    题目 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线 ...

  8. HDU 2815 Mod Tree 离散对数 扩张Baby Step Giant Step算法

    联系:http://acm.hdu.edu.cn/showproblem.php?pid=2815 意甲冠军: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQ ...

  9. hdu 2815 Mod Tree (exBSGS)

    http://acm.hdu.edu.cn/showproblem.php?pid=2815 //解 K^D ≡ N mod P #include<map> #include<cma ...

随机推荐

  1. 100%解决ios上audio不能自动播放的问题

    由于ios的安全机制问题,不允许audio和video自动播放,所以想要使audio标签自动播放那是实现不了的,即使给play()也是播放不了. 解决方法: 首先,创建audio标签:<audi ...

  2. thinkphp的select和find的区别

    hinkphp是比较好的php开发框架,能比较快速的开发MVC架构的管理系统,我们需要用到 select()和find()方法,两个方法都能返回数据集数组,但有什么不同呢?先看一下我的代码对比:$te ...

  3. Sequence query 好题啊

    Sequence query Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) Subm ...

  4. [SDOI2011]工作安排

    Description 你的公司接到了一批订单.订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件.公司共有m名员工,员工被编号为1~m员工能够制造的产品种类有所区别.一件产 ...

  5. 一张图理清ASP.NET Core启动流程

    1. 引言 对于ASP.NET Core应用程序来说,我们要记住非常重要的一点是:其本质上是一个独立的控制台应用,它并不是必需在IIS内部托管且并不需要IIS来启动运行(而这正是ASP.NET Cor ...

  6. PHP CodeBase: 生成N个不重复的随机数

    有25幅作品拿去投票,一次投票需要选16幅,单个作品一次投票只能选择一次.前面有个程序员捅了漏子,忘了把投票入库,有200个用户产生的投票序列为空.那么你会如何填补这个漏子? <?php /* ...

  7. zoj3953 Intervals 最大不重叠区间加强版 zoj排名第一~

    Intervals Time Limit: 1 Second      Memory Limit:65536 KB      Special Judge Chiaki has n intervals ...

  8. 浅谈Java接口

    接口(英文:Interface)是Java中非常重要的内容,初学的时候可能感受不深,但是在做项目的时候,对面向接口编程的运用就变得尤为重要,不过这是后话了.现在先讨论假如是刚刚接触接口这个概念,该怎么 ...

  9. Struts2 02--通配符

       在以前没有使用Struts时,web与前台的数据交互通过Servlet+jsp页面.一个增删改查往往需要写四个Servlet来处理数据:在使用struts之后,Servlet不再被使用,而是通过 ...

  10. MYSQL数据库引擎区别详解

    数据库引擎介绍 MySQL数据库引擎取决于MySQL在安装的时候是如何被编译的.要添加一个新的引擎,就必须重新编译MYSQL.在缺省情况下,MYSQL支持三个引擎:ISAM.MYISAM和HEAP.另 ...