Linux驱动模型解析bus之platform bus
这是内核启动之后要调用的驱动模型的开始代码:
drivers/base/init.c
/**
* driver_init - initialize driver model.
*
* Call the driver model init functions to initialize their
* subsystems. Called early from init/main.c.
*/
void __init driver_init(void)
{
/* These are the core pieces */
devices_init(); // /sys/devices
buses_init(); // /sys/bus
classes_init(); // /sys/class
firmware_init();
hypervisor_init(); /* These are also core pieces, but must come after the
* core core pieces.
*/
platform_bus_init();
system_bus_init();
cpu_dev_init();
memory_dev_init();
}
且看platform_bus_init
drivers/base/platform.c
struct device platform_bus = {
.bus_id = "platform",
};
struct bus_type platform_bus_type = {
.name = "platform",
.dev_attrs = platform_dev_attrs,
.match = platform_match,
.uevent = platform_uevent,
.pm = PLATFORM_PM_OPS_PTR,
};
int __init platform_bus_init(void)
{
int error;
/* /sys/devices/platform (this platform is bus_id's value) */
error = device_register(&platform_bus);
if (error)
return error;
/* /sys/bus/platform (this platform is the value of bus_type's name field) */
error = bus_register(&platform_bus_type); if (error)
device_unregister(&platform_bus); return error;
}
这里讲述 bus_register(&platform_bus_type):
/**
* struct bus_type_private - structure to hold the private to the driver core portions of the bus_type structure.
*
* @subsys - the struct kset that defines this bus. This is the main kobject
* @drivers_kset - the list of drivers associated with this bus
* @devices_kset - the list of devices associated with this bus
* @klist_devices - the klist to iterate over the @devices_kset
* @klist_drivers - the klist to iterate over the @drivers_kset
* @bus_notifier - the bus notifier list for anything that cares about things
* on this bus.
* @bus - pointer back to the struct bus_type that this structure is associated
* with.
*
* This structure is the one that is the actual kobject allowing struct
* bus_type to be statically allocated safely. Nothing outside of the driver
* core should ever touch these fields.
*/
struct bus_type_private {
struct kset subsys;
struct kset *drivers_kset;
struct kset *devices_kset;
struct klist klist_devices;
struct klist klist_drivers;
struct blocking_notifier_head bus_notifier;
unsigned int drivers_autoprobe:;
struct bus_type *bus;
};
int bus_register(struct bus_type *bus)
{
int retval;
struct bus_type_private *priv; priv = kzalloc(sizeof(struct bus_type_private), GFP_KERNEL);
if (!priv)
return -ENOMEM; priv->bus = bus;
bus->p = priv; BLOCKING_INIT_NOTIFIER_HEAD(&priv->bus_notifier); retval = kobject_set_name(&priv->subsys.kobj, "%s", bus->name);
if (retval)
goto out; priv->subsys.kobj.kset = bus_kset;
priv->subsys.kobj.ktype = &bus_ktype;
priv->drivers_autoprobe = ; retval = kset_register(&priv->subsys);
if (retval)
goto out; retval = bus_create_file(bus, &bus_attr_uevent);
if (retval)
goto bus_uevent_fail; priv->devices_kset = kset_create_and_add("devices", NULL,
&priv->subsys.kobj);
if (!priv->devices_kset) {
retval = -ENOMEM;
goto bus_devices_fail;
} priv->drivers_kset = kset_create_and_add("drivers", NULL,
&priv->subsys.kobj);
if (!priv->drivers_kset) {
retval = -ENOMEM;
goto bus_drivers_fail;
} klist_init(&priv->klist_devices, klist_devices_get, klist_devices_put);
klist_init(&priv->klist_drivers, NULL, NULL); retval = add_probe_files(bus);
if (retval)
goto bus_probe_files_fail; retval = bus_add_attrs(bus);
if (retval)
goto bus_attrs_fail; pr_debug("bus: '%s': registered\n", bus->name);
return ;
struct bus_type_private *priv指向struct bus_type,这里会显示/sys/bus/platform
retval = kobject_set_name(&priv->subsys.kobj, "%s", bus->name);
priv->subsys.kobj.kset = bus_kset;
retval = kset_register(&priv->subsys);// subsys is a kset.
这里显示/sys/bus/platform/devices
priv->devices_kset = kset_create_and_add("devices", NULL, &priv->subsys.kobj);
这里显示/sys/bus/platform/drivers
priv->drivers_kset = kset_create_and_add("drivers", NULL, &priv->subsys.kobj);
kset_create_and_add--->kset_register
/**
* kset_register - initialize and add a kset.
* @k: kset.
*/
int kset_register(struct kset *k)
{
int err; if (!k)
return -EINVAL; kset_init(k); // INIT_LIST_HEAD(&k->kobj->entry); INIT_LIST_HEAD(&k->list);
err = kobject_add_internal(&k->kobj);
if (err)
return err;
kobject_uevent(&k->kobj, KOBJ_ADD);
return ;
}
static int kobject_add_internal(struct kobject *kobj)
{
kobj_kset_join(kobj);
error = create_dir(kobj); // /sys/bus/platform
}
/* add the kobject to its kset's list */
static void kobj_kset_join(struct kobject *kobj)
{
if (!kobj->kset)
return; kset_get(kobj->kset);
spin_lock(&kobj->kset->list_lock);
list_add_tail(&kobj->entry, &kobj->kset->list);
spin_unlock(&kobj->kset->list_lock);
}
If a kset is associated with a kobject, then the parent for the kobject can be set to
NULL in the call to kobject_add() and then the kobject's parent will be the kset itself.
确切的说是kobject's parent赋值为kobject关联的kset's kobjcect
struct kobject {
const char *name;
struct list_head entry;
struct kobject *parent;
struct kset *kset;
struct kobj_type *ktype;
struct sysfs_dirent *sd;
struct kref kref;
unsigned int state_initialized:;
unsigned int state_in_sysfs:;
unsigned int state_add_uevent_sent:;
unsigned int state_remove_uevent_sent:;
};
*
* A kset defines a group of kobjects. They can be individually
* different "types" but overall these kobjects all want to be grouped
* together and operated on in the same manner. ksets are used to
* define the attribute callbacks and other common events that happen to
* a kobject.
*
* @list: the list of all kobjects for this kset
* @list_lock: a lock for iterating over the kobjects
* @kobj: the embedded kobject for this kset (recursion, isn't it fun...)
* @uevent_ops: the set of uevent operations for this kset. These are
* called whenever a kobject has something happen to it so that the kset
* can add new environment variables, or filter out the uevents if so
* desired.
*/
struct kset {
struct list_head list;
spinlock_t list_lock;
struct kobject kobj;
struct kset_uevent_ops *uevent_ops;
};
struct list_head {
struct list_head *next, *prev;
};
从list_add_tail(&kobj->entry, &kobj->kset->list); 调用中,我们一下子就明白了,
bus =&struct bus_type platform_bus_type;
bus->p->->subsys.kobj.kset = bus_kset;// bus_kset = kset_create_and_add("bus", &bus_uevent_ops, NULL); 创建了bus的kset显示/sys/bus
所以&kobj->kset->list就是bus_kset->list,list_add_tail就是把bus->p->->subsys.kobj.entry加入到bus_kset->list链表中。
bus_kset包含不同bus的subsys的kset,而代表subsys的kset的就是这个kset中的kobject。所以把kobjetct的entry加入到表示kset的kset->list中。
换句话说,struct kset这个集合包含的内容由其嵌入的struct list_head list来表示,这个struct kset自身由其嵌入的struct kobject kobj来表示。
所以这里就是把platform这个kset加入到bus这个kset中。用户空间的视图表示就是/sys/bus/platform。
Linux驱动模型解析bus之platform bus的更多相关文章
- linux驱动模型——platform(1)
一.驱动模型包含什么? 1.1. 类class 1.1.2. 它能够自动创建/dev下的设备节点,不需要mknod /dev/xxx c x x创建.当然class还有其另外的作用,且自动创建设备节点 ...
- linux驱动模型<输入子系统>
在linux中提供一种输入子系统的驱动模型,其主要是实现在input.c中. 在输入子系统这套模型中,他把驱动分层分类.首先分为上下两层,上层为input.c .下层为驱动的实现,下层分为两部分,一部 ...
- linux驱动模型——platform(2)
一. platform 组织架构 1.1. platform工作体系都定义在drivers/base/platform.c中 1.2. platform相关函数声明在include/linux/pla ...
- Linux设备驱动模型之platform(平台)总线详解
/********************************************************/ 内核版本:2.6.35.7 运行平台:三星s5pv210 /*********** ...
- Linux驱动中的platform总线分析
copy from :https://blog.csdn.net/fml1997/article/details/77622860 概述 从Linux2.6内核起,引入一套新的驱动管理和注册机制:pl ...
- linux内核驱动模型
linux内核驱动模型,以2.6.32内核为例.(一边写一边看的,有点乱.) 1.以内核对象为基础.用kobject表示,相当于其它对象的基类,是构建linux驱动模型的关键.具有相同类型的内核对象构 ...
- linux设备模型_转
建议原博文查看,效果更佳. 转自:http://www.cnblogs.com/wwang/category/269350.html Linux设备模型 (1) 随着计算机的周边外设越来越丰富,设备管 ...
- Linux设备模型 (1)
随着计算机的周边外设越来越丰富,设备管理已经成为现代操作系统的一项重要任务,这对于Linux来说也是同样的情况.每次Linux内核新版本的发布,都会伴随着一批设备驱动进入内核.在Linux内核里,驱动 ...
- Linux Platform驱动模型(一)-设备信息
我在Linux字符设备驱动框架一文中简单介绍了Linux字符设备编程模型,在那个模型中,只要应用程序open()了相应的设备文件,就可以使用ioctl通过驱动程序来控制我们的硬件,这种模型直观,但是从 ...
随机推荐
- Java http请求和调用
关于http get和post请求调用代码以及示例. 参考:http://www.cnblogs.com/zhuawang/archive/2012/12/08/2809380.html http请求 ...
- RMQ问题第一弹
今天,我给大家分享一下我在学习 RMQ 问题过程中对该问题的理解. RMQ (Range Minimum/Maximum Query ):中文名为"区间最值查询".RMQ 问题指的 ...
- CentOS服务器上的 git 包版本控制
本文衔接上文"记录一次无聊的(经历了Nodejs -> Shell -> C)的探索问题过程",服务器上git版本是1.8.3.1,使用的pm2来管理nodejs进程, ...
- Android中Parcelable接口
1. Parcelable接口 Interface for classes whose instances can be written to and restored from a Parcel. ...
- CenOs 部署记录
1.安装APache.即 httpd 2.需要将80端口添加进iptable.外网才能访问.命令:iptables -I INPUT -p TCP --dport 80 -j ACCEPT
- [USACO 3.3.1]骑马修栅栏t
[USACO 3.3.1]骑马修栅栏 时间限制: 1 Sec 内存限制: 64 MB提交: 39 解决: 17[提交][状态][讨论版] 题目描述 农民John每年有很多栅栏要修理.他总是骑着马穿 ...
- html基础知识笔记
HTML基础 1.1HTML文件的基本结构和W3C标准 1.1.1HTML简介 HTML是一种描述网页的语言,一种超文本标记的语言! 1.1.2HTML文件的基本结构 头部(head) 头部是网页的标 ...
- 为什么说程序员都应该玩一玩GitHub
既熟悉又陌生的GitHub 关于GitHub,相信每一个程序员都再熟悉不过了.它为开发者提供Git仓库的托管服务,是全世界最大的代码集中地,被戏称为“全球最大同性交友网站”. 但是对于很大一部分程序员 ...
- js-location应用
1 location.search ?xxx=sss&yyy=ddd 获取地址中查询的值 /** * 解析url参数 * @example ?id=123456&a=b * @retu ...
- thrift例子:python客户端/java服务端
java服务端的代码请看上文. 1.说明: 这两篇文章其实解决的问题是,当使用python去访问大数据线上集群的时候,遇到两个问题: 1)python-hadoop和python-hive相关包链接不 ...