作者提出为了增强网络的表达能力,现有的工作显示了加强空间编码的作用。在这篇论文里面,作者重点关注channel上的信息,提出了“Squeeze-and-Excitation"(SE)block,实际上就是显式的让网络关注channel之间的信息 (adaptively recalibrates channel-wise feature responsesby explicitly modelling interdependencies between channels.)。SEnets取得了ILSVRC2017的第一名, top-5 error 2.251%

之前的一些架构设计关注空间依赖

Inception architectures: embedding multi-scale processes in its modules

Resnet, stack hourglass

spatial attention: Spatial transformer networks

作者的设计思路:

we investigate a different

aspect of architectural design - the channel relationship


Our goal is to improve the representational power of a network by explicitly

modelling the interdependencies between the channels of its

convolutional features. To achieve this, we propose a mechanism that allows the network to perform feature recalibration, through which it can learn to use global information

to selectively emphasise informative features and suppress

less useful ones.
作者希望能够对卷积特征进行recalibration,根据后文我的理解就是对channel进行加权了。

相关工作

网络结构:

VGGNets, Inception models, BN, Resnet, Densenet, Dual path network

其他方式:Grouped convolution, Multi-branch convolution, Cross-channel correlations

This approach reflects an assumption that channel relationships can

be formulated as a composition of instance-agnostic functions with local receptive fields.


Attention, gating mechanisms

SE block

\({F_{tr}}:X \in R{^{W' \times H' \times C'}},{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} U \in {\kern 1pt} {\kern 1pt} {R^{W \times H \times C}}\)

设\(V = [v_1, v_2, ..., v_C]\)表示学习到的filter kernel, \(v_c\)表示第c个filter的参数,那么\(F_{tr}\)的输出\(U = [u_1,u_2,...,u_C]\):

\[{u_c} = {\rm{ }}{{\rm{v}}_c} * X = \sum\limits_{s = 1}^{C'} {v_c^s} * {x^s}
\]

\(v_c^s\)是一个channel的kernel,一个新产生的channel是原有所有channel与相应的filter kernel卷积的和。channel间的关系隐式的包含在\(v_c\)中,但是这些信息和空间相关性纠缠在一起了,作者的目标就是让网络更加关注有用的信息。分成了Squeeze和Excitation两步来完成目的。

Squeeze

现有网络的问题:由于卷积实在local receptive field做的,因此每个卷积单元只能关注这个field内的空间信息。

为了减轻这个问题,提出了Squeeze操作将全局的空间信息编码到channel descriptor中,具体而言是通过global average pooling操作完成的。

\[{z_c} = {F_{sq}}({u_c}) = {1 \over {W \times H}}\sum\limits_{i = 1}^W {\sum\limits_{j = 1}^H {{u_c}(i,j)} }
\]

就是求每个channel的均值,作为全局的描述。

Excitation: Adaptive Recalibration

为了利用Squeeze得到的信息,提出了第二个op,这个op需要满足2个要求:一个是足够灵活,需要能够学习channel间的非线性关系,另一个就是能够学习non-mutually-exclusive关系,这个词我的理解是非独占性,可能是说多个channnel之间会有各种各样的关系吧。

\[s = {F_{ex}}(z,W) = \sigma (g(z,W)) = \sigma ({W_2}\delta ({W_1}z))
\]

$\delta \(是ReLu,\){W_1} \in {R^{{C \over r} \times C}}\(,\){W_2} \in {R^{C \times {C \over r}}}\(,\)W_1\(是bottleneck,降低channel数,\)W_2\(是增加channel数,\)\gamma\(设置为16。最终再将\)U\(用\)s$来scale,其实也就是加权了。这样就得到了一个block的输出。

\[{x_c} = {F_{scale}}({u_c},{s_c}) = {s_c} \cdot {u_c}
\]

\(F_{scale}\)表示feature map \(u_c \in R^{W \times H}\)和\(s_c\)的channel-wise乘法

The activations act as channel weights

adapted to the input-specific descriptor z. In this regard,

SE blocks intrinsically introduce dynamics conditioned on

the input, helping to boost feature discriminability

  1. Example



    SE block可以很方便的加到其他网络结构上。
  2. Mxnet code
squeeze = mx.sym.Pooling(data=bn3, global_pool=True, kernel=(7, 7), pool_type='avg', name=name + '_squeeze')
squeeze = mx.symbol.Flatten(data=squeeze, name=name + '_flatten')
excitation = mx.symbol.FullyConnected(data=squeeze, num_hidden=int(num_filter*ratio), name=name + '_excitation1')#bottleneck
excitation = mx.sym.Activation(data=excitation, act_type='relu', name=name + '_excitation1_relu')
excitation = mx.symbol.FullyConnected(data=excitation, num_hidden=num_filter, name=name + '_excitation2')
excitation = mx.sym.Activation(data=excitation, act_type='sigmoid', name=name + '_excitation2_sigmoid')
bn3 = mx.symbol.broadcast_mul(bn3, mx.symbol.reshape(data=excitation, shape=(-1, num_filter, 1, 1)))
  1. 网络结构

  2. Experiments

参考文献:

[1] Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." arXiv preprint arXiv:1709.01507 (2017).

欢迎关注公众号:vision_home 共同学习,不定期分享论文和资源

论文笔记-Squeeze-and-Excitation Networks的更多相关文章

  1. 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

    论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21: ...

  2. 论文笔记(1)-Dropout-Improving neural networks by preventing co-adaptation of feature detectors

    Improving neural networks by preventing co-adaptation of feature detectors 是Hinton在2012年6月份发表的,从这篇文章 ...

  3. 论文笔记:Diffusion-Convolutional Neural Networks (传播-卷积神经网络)

    Diffusion-Convolutional Neural Networks (传播-卷积神经网络)2018-04-09 21:59:02 1. Abstract: 我们提出传播-卷积神经网络(DC ...

  4. 【论文笔记】Progressive Neural Networks 渐进式神经网络

    Progressive NN Progressive NN是第一篇我看到的deepmind做这个问题的.思路就是说我不能忘记第一个任务的网络,同时又能使用第一个任务的网络来做第二个任务. 为了不忘记之 ...

  5. 论文笔记——Factorized Convolutional Neural Networks

    1. 论文思想 将3D卷积分解为spatial convolution in each channel and linear projection across channels. (spatial ...

  6. 论文笔记—Flattened convolution neural networks for feedforward acceleration

    1. 论文思想 一维滤过器.将三维卷积分解成三个一维卷积.convolution across channels(lateral), vertical and horizontal direction ...

  7. 论文笔记:Fully-Convolutional Siamese Networks for Object Tracking

    Fully-Convolutional Siamese Networks for Object Tracking 本文作者提出一个全卷积Siamese跟踪网络,该网络有两个分支,一个是上一帧的目标,一 ...

  8. 深度学习论文笔记:Deep Residual Networks with Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes

    这篇文章将深度学习算法应用于机械故障诊断,采用了“小波包分解+深度残差网络(ResNet)”的思路,将机械振动信号按照故障类型进行分类. 文章的核心创新点:复杂旋转机械系统的振动信号包含着很多不同频率 ...

  9. 论文笔记《Fully Convolutional Networks for Semantic Segmentation》

    一.Abstract 提出了一种end-to-end的做semantic segmentation的方法,也就是FCN,是我个人觉得非常厉害的一个方法. 二.亮点 1.提出了全卷积网络的概念,将Ale ...

随机推荐

  1. 一个for循环打印二维数组

    #include<stdio.h> #define MAXX 2 #define MAXY 3 void printarray() { ,,,,,}; ;i< MAXX*MAXY;i ...

  2. 【LintCode·容易】字符串置换

    字符串置换 描述: 给定两个字符串,请设计一个方法来判定其中一个字符串是否为另一个字符串的置换. 置换的意思是,通过改变顺序可以使得两个字符串相等. 样例: "abc" 为 &qu ...

  3. 应用教程之帕克西AR虚拟试妆3D动态美妆

    帕克西技术团队通过对美妆行业深度调研,凭借自主研发的人脸识别与面部追踪等技术,打造的超现实AR虚拟试妆应用已成功上线,内置万千妆容,包含口红.眉毛.睫毛等,一点即可试妆,就像照镜子一样简单. 那么,帕 ...

  4. Yahoo网站性能优化的34条军规

    1.尽量减少HTTP请求次数 终端用户响应的时间中,有80%用于下载各项内容,这部分时间包括下载页面中的图像.样式表.脚本.Flash等.通过减少页面中的元素可以减少HTTP请求的次数,这是提高网页速 ...

  5. 第三方登录,一般都是遵循OAuth2.0协议。

    1. QQ登录OAuth2.0协议开发流程 1.1 开发流程 申请接入,获取appid和appkey; 开发应用,设置协作者账号,上线之前只有协作者才能进行第三方登录 放置QQ登录按钮(这个自己可以用 ...

  6. mshta 反弹shell

    kali系统准备: 复制以下ruby代码到/usr/share/metasploit-framework/modules/exploits/windows/smb/msh_shell.rb目录(要注意 ...

  7. 基于Jmeter的接口自动化测试实践

    在去年实施了一年的三端(PC.无线M站.无线APP[Android.IOS])后,今年7月份开始,我们开始进行接口自动化的实施,目前已完成了整个框架的搭建以及接口的持续测试集成.今天做个简单的分享. ...

  8. Jarvis OJ - [XMAN]level3 - Writeup——ret2libc尝试

    这次除了elf程序还附带一个动态链接库 先看一下,很一般的保护 思路分析 在ida中查看,可以确定通过read函数输入buf进行溢出,但是并没有看到合适的目标函数 但是用ida打开附带的链接库,可以看 ...

  9. 记一次高并发场景下.net监控程序数据上报的性能调优

    最近在和小伙伴们做充电与通信程序的架构迁移.迁移前的架构是,通信程序负责接收来自充电集控设备的数据实时数据,通过Thrift调用后端的充电服务,充电服务收到响应后放到进程的Queue中,然后在管理线程 ...

  10. sphinx+reStructuredText制作文档

    1 spinx简介 Sphinx 是一种文档工具,它可以令人轻松的撰写出清晰且优美的文档, 由 Georg Brandl 在BSD 许可证下开发. 新版的Python文档 就是由Sphinx生成的,并 ...