mapTask并行度的决定机制

  一个job的map阶段并行度由客户端在提交job时决定,而客户端对map阶段并行度的规划的基本逻辑为:将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分成逻辑上的多个split),然后每一个split分配一个mapTask并行实例处理。

FileInputFormat切片机制

1、默认切片定义在InputFormat类中的getSplit()方法

2、FileInputFormat中默认的切片机制:

a) 简单地按照文件的内容长度进行切片

b) 切片大小,默认等于hdfs的block大小

c) 切片时不考虑数据集整体,而是逐个针对每一个文件单独切片

比如待处理数据有两个文件:

file1.txt    260M
file2.txt 10M

经过FileInputFormat的切片机制运算后,形成的切片信息如下:

file1.txt.split1--  0~128
file1.txt.split2-- 128~260 //如果剩余的文件长度/切片长度<=1.1则会将剩余文件的长度并未一个切片
file2.txt.split1-- 0~10M

3、FileInputFormat中切片的大小的参数配置

通过分析源码,在FileInputFormat中,计算切片大小的逻辑:Math.max(minSize, Math.min(maxSize, blockSize)); 切片主要由这几个值来运算决定。

minsize:默认值:1
配置参数: mapreduce.input.fileinputformat.split.minsize maxsize:默认值:Long.MAXValue
配置参数:mapreduce.input.fileinputformat.split.maxsize blocksize:值为hdfs的对应文件的blocksize 配置读取目录下文件数量的线程数:public static final String LIST_STATUS_NUM_THREADS =
      "mapreduce.input.fileinputformat.list-status.num-threads";

因此,默认情况下,Math.max(minSize, Math.min(maxSize, blockSize));切片大小=blocksize

maxsize(切片最大值):参数如果调得比blocksize小,则会让切片变小。

minsize(切片最小值):参数调的比blockSize大,则可以让切片变得比blocksize还大。

选择并发数的影响因素:

1、运算节点的硬件配置

2、运算任务的类型:CPU密集型还是IO密集型

3、运算任务的数据量

3、hadoop2.6.4源码解析

org.apache.hadoop.mapreduce.JobSubmitter类

   //得到job的map任务的并行数量
private int writeSplits(org.apache.hadoop.mapreduce.JobContext job,
Path jobSubmitDir) throws IOException,
InterruptedException, ClassNotFoundException {
JobConf jConf = (JobConf)job.getConfiguration();
int maps;
if (jConf.getUseNewMapper()) {
maps = writeNewSplits(job, jobSubmitDir);
} else {
maps = writeOldSplits(jConf, jobSubmitDir);
}
return maps;
} @SuppressWarnings("unchecked")
private <T extends InputSplit>
int writeNewSplits(JobContext job, Path jobSubmitDir) throws IOException,
InterruptedException, ClassNotFoundException {
Configuration conf = job.getConfiguration();
InputFormat<?, ?> input =
ReflectionUtils.newInstance(job.getInputFormatClass(), conf);
   
List<InputSplit> splits = input.getSplits(job);
T[] array = (T[]) splits.toArray(new InputSplit[splits.size()]); // sort the splits into order based on size, so that the biggest
// go first
Arrays.sort(array, new SplitComparator());
JobSplitWriter.createSplitFiles(jobSubmitDir, conf,
jobSubmitDir.getFileSystem(conf), array);
return array.length;
}

切片计算逻辑,关注红色字体代码即可。

public List<InputSplit> getSplits(JobContext job) throws IOException {
Stopwatch sw = new Stopwatch().start();
long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
long maxSize = getMaxSplitSize(job);
// generate splits
List<InputSplit> splits = new ArrayList<InputSplit>();
List<FileStatus> files = listStatus(job);
   //遍历文件,对每一个文件进行如下处理:获得文件的blocksize,获取文件的长度,得到切片信息(spilt 文件路径,切片编号,偏移量范围)
for (FileStatus file: files) {
Path path = file.getPath();
long length = file.getLen();
if (length != 0) {
BlockLocation[] blkLocations;
if (file instanceof LocatedFileStatus) {
blkLocations = ((LocatedFileStatus) file).getBlockLocations();
} else {
FileSystem fs = path.getFileSystem(job.getConfiguration());
blkLocations = fs.getFileBlockLocations(file, 0, length);
}
if (isSplitable(job, path)) {
long blockSize = file.getBlockSize();
long splitSize = computeSplitSize(blockSize, minSize, maxSize);
long bytesRemaining = length;
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, splitSize,
blkLocations[blkIndex].getHosts(),
blkLocations[blkIndex].getCachedHosts()));
bytesRemaining -= splitSize;
} if (bytesRemaining != 0) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,
blkLocations[blkIndex].getHosts(),
blkLocations[blkIndex].getCachedHosts()));
}
} else { // not splitable
splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts(),
blkLocations[0].getCachedHosts()));
}
} else {
//Create empty hosts array for zero length files
splits.add(makeSplit(path, 0, length, new String[0]));
}
}
// Save the number of input files for metrics/loadgen
job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());
sw.stop();
if (LOG.isDebugEnabled()) {
LOG.debug("Total # of splits generated by getSplits: " + splits.size()
+ ", TimeTaken: " + sw.elapsedMillis());
}
return splits;
}
 public static final String SPLIT_MINSIZE =
"mapreduce.input.fileinputformat.split.minsize"; public static final String SPLIT_MAXSIZE =
"mapreduce.input.fileinputformat.split.maxsize"; long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //保证切分的文件长度最小不得小于1字节
protected long getFormatMinSplitSize() {
return 1;
} //如果没有在conf中设置SPLIT_MINSIZE参数,则取默认值1字节。
public static long getMinSplitSize(JobContext job) {
return job.getConfiguration().getLong(SPLIT_MINSIZE, 1L);
} //得到切片文件的最大长度
long maxSize = getMaxSplitSize(job); //如果没有在conf中设置SPLIT_MAXSIZE参数,则去默认值Long.MAX_VALUE字节。
public static long getMaxSplitSize(JobContext context) {
return context.getConfiguration().getLong(SPLIT_MAXSIZE,
Long.MAX_VALUE);
} //读取指定目录下的所有文件的信息
List<FileStatus> files = listStatus(job);
//如果没有指定开启几个线程读取,则默认一个线程去读文件信息,因为存在目录下有上亿个文件的情况,所以有需要开启多个线程加快读取。
int numThreads = job.getConfiguration().getInt(LIST_STATUS_NUM_THREADS,
DEFAULT_LIST_STATUS_NUM_THREADS);
public static final String LIST_STATUS_NUM_THREADS =
"mapreduce.input.fileinputformat.list-status.num-threads";
public static final int DEFAULT_LIST_STATUS_NUM_THREADS = 1; //计算切片文件的逻辑大小
long splitSize = computeSplitSize(blockSize, minSize, maxSize);
protected long computeSplitSize(long blockSize, long minSize,
long maxSize) {
return Math.max(minSize, Math.min(maxSize, blockSize));
} private static final double SPLIT_SLOP = 1.1; // 10% slop
//判断剩余文件与切片大小的比是否为1.1.
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, splitSize,
blkLocations[blkIndex].getHosts(),
blkLocations[blkIndex].getCachedHosts()));
bytesRemaining -= splitSize;
}

map并行度

  如果job的每个map或者reduce的task的运行时间都只有30-40秒钟(最好每个map的执行时间最少不低于一分钟),那么就减少该job的map或者reduce数。每一个task的启动和加入到调度器中进行调度,这个中间的过程可能都要花费几秒钟,所以如果每个task都非常快就跑完了,就会在task的开始和结束的时候浪费太多的时间。

  配置task的JVM重用可以改善该问题:
  (mapred.job.reuse.jvm.num.tasks,默认是1,表示一个JVM上最多可以顺序执行的task数目(属于同一个Job)是1。也就是说一个task启一个JVM)。

小文件的场景下,默认的切片机制会造成大量的maptask处理很少量的数据,效率低下:

解决方案:

  推荐:把小文件存入hdfs之前进行预处理,先合并为大文件后再上传。

  折中:写程序对hdfs上小文件进行合并再跑job处理。

  补救措施:如果大量的小文件已经存在hdfs上了,使用combineInputFormate组件,它可以将众多的小文件从逻辑上规划到一个切片中,这样多个小文件就可以交给一个maptask操作了。

mapTask并行度优化及源码分析的更多相关文章

  1. MapReduce中map并行度优化及源码分析

    mapTask并行度的决定机制 一个job的map阶段并行度由客户端在提交job时决定,而客户端对map阶段并行度的规划的基本逻辑为:将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分 ...

  2. Java架构师/高并发/高可用/高扩展/性能优化/框架源码分析实战

    https://ke.qq.com/course/401944?taid=3389721334391320

  3. 布局优化之ViewStub源码分析

    源码分析 @RemoteView public final class ViewStub extends View { private int mInflatedId; private int mLa ...

  4. Netty源码分析第2章(NioEventLoop)---->第5节: 优化selector

    Netty源码分析第二章: NioEventLoop   第五节: 优化selector 在剖析selector轮询之前, 我们先讲解一下selector的创建过程 回顾之前的小节, 在创建NioEv ...

  5. spark源码分析以及优化

    第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和O ...

  6. 消息队列的一些场景及源码分析,RocketMQ使用相关问题及性能优化

    前文目录链接参考: 消息队列的一些场景及源码分析,RocketMQ使用相关问题及性能优化 https://www.cnblogs.com/yizhiamumu/p/16694126.html 消息队列 ...

  7. 《深入理解Spark:核心思想与源码分析》(第2章)

    <深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...

  8. Hadoop RCFile存储格式详解(源码分析、代码示例)

    RCFile   RCFile全称Record Columnar File,列式记录文件,是一种类似于SequenceFile的键值对(Key/Value Pairs)数据文件.   关键词:Reco ...

  9. Spark源码分析 – Shuffle

    参考详细探究Spark的shuffle实现, 写的很清楚, 当前设计的来龙去脉 Hadoop Hadoop的思路是, 在mapper端每次当memory buffer中的数据快满的时候, 先将memo ...

随机推荐

  1. 未来工厂——电器行业ERP案例

    江苏科兴电器有限公司位于全国著名的“银杏之乡”泰兴市南首,主要生产35kV及以下电流.电压互感器等系列产品.产品多次经国家及省市技术监督部门抽检合格,广泛应用于国家重点工程.“COSINE”商标荣获泰 ...

  2. Servlet的监听

    Servlet监听 在<Servlet和Jsp>中我们使用了ServletConfig获取Servlet的初始配置,用ServletContext来获取整个Web应用的初始配置,但如果需要 ...

  3. Android中使用findViewByMe提升组件查找效率

    1.引出 安卓初学者一般在写android Activity的时候总是会在onCreate方法中加上setContentView方法来加载layout,通过findViewById来实现控件的绑定,刚 ...

  4. C/C++学习路线图

    文章转载自「开发者圆桌」一个关于开发者入门.进阶.踩坑的微信公众号 这里整理的C/C++学习路线图包含初中高三个部分,你可以通过百度云盘下载观看对应的视频 链接: http://pan.baidu.c ...

  5. .NET 发布网站步骤

    本文章分为三个部分: web网站发布.IIS6 安装方法.ASP.NET v4.0 安装方法 一.web网站发布 1.打开 Visual Studio 2013 编译环境 2.在其解决方案上右击弹出重 ...

  6. 技术分享,学术报告presentation 常用的承接句

    前言 现在即使是搞技术,做科研的,也需要在不同的场合,用ppt来做分享,做汇报,做总结. 如果国际会议,研讨会,或者在外企,国外工作,英文的presentation就更加必不可少.英语的提升需要大家从 ...

  7. Robot Framework自动化测试环境部署

    文档版本:v1.0 作者:令狐冲 如有问题请发邮件到:1146009864@qq.com 使用Robot Framework框架(以下简称RF)来做自动化测试. 模块化设计 1.所需环境一览表 软件 ...

  8. 关于nodeJS多线程的支持,目前看来无法实现,讲解v8的一些东西

    关于这个,我这几天一直在研究,国内关于v8的资料很少,stackoverflow上也不多. 说起来我得说声抱歉,虽然并没有承诺什么.这个功能大概是无法实现.下面我来解释一下为什么. 首先我们要了解一下 ...

  9. 476. Number Complement

    题目 Given a positive integer, output its complement number. The complement strategy is to flip the bi ...

  10. JSP文件转换成为JAVA文件后的结构

    public final class zzz_jsp extends HttpJspBase implements JspSourceDependent{ public void _jspInit() ...