mapTask并行度的决定机制

  一个job的map阶段并行度由客户端在提交job时决定,而客户端对map阶段并行度的规划的基本逻辑为:将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分成逻辑上的多个split),然后每一个split分配一个mapTask并行实例处理。

FileInputFormat切片机制

1、默认切片定义在InputFormat类中的getSplit()方法

2、FileInputFormat中默认的切片机制:

a) 简单地按照文件的内容长度进行切片

b) 切片大小,默认等于hdfs的block大小

c) 切片时不考虑数据集整体,而是逐个针对每一个文件单独切片

比如待处理数据有两个文件:

file1.txt    260M
file2.txt 10M

经过FileInputFormat的切片机制运算后,形成的切片信息如下:

file1.txt.split1--  0~128
file1.txt.split2-- 128~260 //如果剩余的文件长度/切片长度<=1.1则会将剩余文件的长度并未一个切片
file2.txt.split1-- 0~10M

3、FileInputFormat中切片的大小的参数配置

通过分析源码,在FileInputFormat中,计算切片大小的逻辑:Math.max(minSize, Math.min(maxSize, blockSize)); 切片主要由这几个值来运算决定。

minsize:默认值:1
配置参数: mapreduce.input.fileinputformat.split.minsize maxsize:默认值:Long.MAXValue
配置参数:mapreduce.input.fileinputformat.split.maxsize blocksize:值为hdfs的对应文件的blocksize 配置读取目录下文件数量的线程数:public static final String LIST_STATUS_NUM_THREADS =
      "mapreduce.input.fileinputformat.list-status.num-threads";

因此,默认情况下,Math.max(minSize, Math.min(maxSize, blockSize));切片大小=blocksize

maxsize(切片最大值):参数如果调得比blocksize小,则会让切片变小。

minsize(切片最小值):参数调的比blockSize大,则可以让切片变得比blocksize还大。

选择并发数的影响因素:

1、运算节点的硬件配置

2、运算任务的类型:CPU密集型还是IO密集型

3、运算任务的数据量

3、hadoop2.6.4源码解析

org.apache.hadoop.mapreduce.JobSubmitter类

   //得到job的map任务的并行数量
private int writeSplits(org.apache.hadoop.mapreduce.JobContext job,
Path jobSubmitDir) throws IOException,
InterruptedException, ClassNotFoundException {
JobConf jConf = (JobConf)job.getConfiguration();
int maps;
if (jConf.getUseNewMapper()) {
maps = writeNewSplits(job, jobSubmitDir);
} else {
maps = writeOldSplits(jConf, jobSubmitDir);
}
return maps;
} @SuppressWarnings("unchecked")
private <T extends InputSplit>
int writeNewSplits(JobContext job, Path jobSubmitDir) throws IOException,
InterruptedException, ClassNotFoundException {
Configuration conf = job.getConfiguration();
InputFormat<?, ?> input =
ReflectionUtils.newInstance(job.getInputFormatClass(), conf);
   
List<InputSplit> splits = input.getSplits(job);
T[] array = (T[]) splits.toArray(new InputSplit[splits.size()]); // sort the splits into order based on size, so that the biggest
// go first
Arrays.sort(array, new SplitComparator());
JobSplitWriter.createSplitFiles(jobSubmitDir, conf,
jobSubmitDir.getFileSystem(conf), array);
return array.length;
}

切片计算逻辑,关注红色字体代码即可。

public List<InputSplit> getSplits(JobContext job) throws IOException {
Stopwatch sw = new Stopwatch().start();
long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
long maxSize = getMaxSplitSize(job);
// generate splits
List<InputSplit> splits = new ArrayList<InputSplit>();
List<FileStatus> files = listStatus(job);
   //遍历文件,对每一个文件进行如下处理:获得文件的blocksize,获取文件的长度,得到切片信息(spilt 文件路径,切片编号,偏移量范围)
for (FileStatus file: files) {
Path path = file.getPath();
long length = file.getLen();
if (length != 0) {
BlockLocation[] blkLocations;
if (file instanceof LocatedFileStatus) {
blkLocations = ((LocatedFileStatus) file).getBlockLocations();
} else {
FileSystem fs = path.getFileSystem(job.getConfiguration());
blkLocations = fs.getFileBlockLocations(file, 0, length);
}
if (isSplitable(job, path)) {
long blockSize = file.getBlockSize();
long splitSize = computeSplitSize(blockSize, minSize, maxSize);
long bytesRemaining = length;
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, splitSize,
blkLocations[blkIndex].getHosts(),
blkLocations[blkIndex].getCachedHosts()));
bytesRemaining -= splitSize;
} if (bytesRemaining != 0) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,
blkLocations[blkIndex].getHosts(),
blkLocations[blkIndex].getCachedHosts()));
}
} else { // not splitable
splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts(),
blkLocations[0].getCachedHosts()));
}
} else {
//Create empty hosts array for zero length files
splits.add(makeSplit(path, 0, length, new String[0]));
}
}
// Save the number of input files for metrics/loadgen
job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());
sw.stop();
if (LOG.isDebugEnabled()) {
LOG.debug("Total # of splits generated by getSplits: " + splits.size()
+ ", TimeTaken: " + sw.elapsedMillis());
}
return splits;
}
 public static final String SPLIT_MINSIZE =
"mapreduce.input.fileinputformat.split.minsize"; public static final String SPLIT_MAXSIZE =
"mapreduce.input.fileinputformat.split.maxsize"; long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //保证切分的文件长度最小不得小于1字节
protected long getFormatMinSplitSize() {
return 1;
} //如果没有在conf中设置SPLIT_MINSIZE参数,则取默认值1字节。
public static long getMinSplitSize(JobContext job) {
return job.getConfiguration().getLong(SPLIT_MINSIZE, 1L);
} //得到切片文件的最大长度
long maxSize = getMaxSplitSize(job); //如果没有在conf中设置SPLIT_MAXSIZE参数,则去默认值Long.MAX_VALUE字节。
public static long getMaxSplitSize(JobContext context) {
return context.getConfiguration().getLong(SPLIT_MAXSIZE,
Long.MAX_VALUE);
} //读取指定目录下的所有文件的信息
List<FileStatus> files = listStatus(job);
//如果没有指定开启几个线程读取,则默认一个线程去读文件信息,因为存在目录下有上亿个文件的情况,所以有需要开启多个线程加快读取。
int numThreads = job.getConfiguration().getInt(LIST_STATUS_NUM_THREADS,
DEFAULT_LIST_STATUS_NUM_THREADS);
public static final String LIST_STATUS_NUM_THREADS =
"mapreduce.input.fileinputformat.list-status.num-threads";
public static final int DEFAULT_LIST_STATUS_NUM_THREADS = 1; //计算切片文件的逻辑大小
long splitSize = computeSplitSize(blockSize, minSize, maxSize);
protected long computeSplitSize(long blockSize, long minSize,
long maxSize) {
return Math.max(minSize, Math.min(maxSize, blockSize));
} private static final double SPLIT_SLOP = 1.1; // 10% slop
//判断剩余文件与切片大小的比是否为1.1.
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, splitSize,
blkLocations[blkIndex].getHosts(),
blkLocations[blkIndex].getCachedHosts()));
bytesRemaining -= splitSize;
}

map并行度

  如果job的每个map或者reduce的task的运行时间都只有30-40秒钟(最好每个map的执行时间最少不低于一分钟),那么就减少该job的map或者reduce数。每一个task的启动和加入到调度器中进行调度,这个中间的过程可能都要花费几秒钟,所以如果每个task都非常快就跑完了,就会在task的开始和结束的时候浪费太多的时间。

  配置task的JVM重用可以改善该问题:
  (mapred.job.reuse.jvm.num.tasks,默认是1,表示一个JVM上最多可以顺序执行的task数目(属于同一个Job)是1。也就是说一个task启一个JVM)。

小文件的场景下,默认的切片机制会造成大量的maptask处理很少量的数据,效率低下:

解决方案:

  推荐:把小文件存入hdfs之前进行预处理,先合并为大文件后再上传。

  折中:写程序对hdfs上小文件进行合并再跑job处理。

  补救措施:如果大量的小文件已经存在hdfs上了,使用combineInputFormate组件,它可以将众多的小文件从逻辑上规划到一个切片中,这样多个小文件就可以交给一个maptask操作了。

mapTask并行度优化及源码分析的更多相关文章

  1. MapReduce中map并行度优化及源码分析

    mapTask并行度的决定机制 一个job的map阶段并行度由客户端在提交job时决定,而客户端对map阶段并行度的规划的基本逻辑为:将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分 ...

  2. Java架构师/高并发/高可用/高扩展/性能优化/框架源码分析实战

    https://ke.qq.com/course/401944?taid=3389721334391320

  3. 布局优化之ViewStub源码分析

    源码分析 @RemoteView public final class ViewStub extends View { private int mInflatedId; private int mLa ...

  4. Netty源码分析第2章(NioEventLoop)---->第5节: 优化selector

    Netty源码分析第二章: NioEventLoop   第五节: 优化selector 在剖析selector轮询之前, 我们先讲解一下selector的创建过程 回顾之前的小节, 在创建NioEv ...

  5. spark源码分析以及优化

    第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和O ...

  6. 消息队列的一些场景及源码分析,RocketMQ使用相关问题及性能优化

    前文目录链接参考: 消息队列的一些场景及源码分析,RocketMQ使用相关问题及性能优化 https://www.cnblogs.com/yizhiamumu/p/16694126.html 消息队列 ...

  7. 《深入理解Spark:核心思想与源码分析》(第2章)

    <深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...

  8. Hadoop RCFile存储格式详解(源码分析、代码示例)

    RCFile   RCFile全称Record Columnar File,列式记录文件,是一种类似于SequenceFile的键值对(Key/Value Pairs)数据文件.   关键词:Reco ...

  9. Spark源码分析 – Shuffle

    参考详细探究Spark的shuffle实现, 写的很清楚, 当前设计的来龙去脉 Hadoop Hadoop的思路是, 在mapper端每次当memory buffer中的数据快满的时候, 先将memo ...

随机推荐

  1. python excel操作总结

    1.openpyxl包的导入 Dos命令行输入 pip install openpyxl==2.3.3 这里注意一下openpyxl包的版本问题 版本装的太高有很多api不支持了,所以笔者这里用的是2 ...

  2. ci 框架发送邮箱

    定义数据 $config = array(    'protocol' =>'smtp',    'smtp_host'=>'ssl://smtp.163.com',    'smtp_u ...

  3. JS日期加减指定天数

    JS中没有直接操作日期加减的方法,只能通过Date对象获取当前天数加减之后setDate,以此来达到操作日期的目的 JS中对指定日期加减指定天数,具体方法如下: function addDate(da ...

  4. 2016: [Usaco2010]Chocolate Eating

    2016: [Usaco2010]Chocolate Eating Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 224  Solved: 87[Su ...

  5. a中的类型转换

    自动类型转换 当然自动类型转换是需要满足特定的条件的: 1.  目标类型能与源类型兼容,如 double 型兼容 int 型,但是 char 型不能兼容 int 型. 2.  目标类型大于源类型,如 ...

  6. mybatis 使用场景

    1.Database design is often a separate function (with separate management) from OO domain design 数据库设 ...

  7. 【转】Django Middleware

    Django 处理一个 Request 的过程是首先通过中间件,然后再通过默认的 URL 方式进行的.我们可以在 Middleware 这个地方把所有Request 拦截住,用我们自己的方式完成处理以 ...

  8. Oh, my god令人头痛的“对象”--------C#数据类型

    1.C#常用的数据类型: ①整型            int ②浮点型         float ③双精度型      double ④字符串         string ⑤布尔类型       ...

  9. javascript继承--原型链的 继承

    作者的话:原型链是JavaScript中相当重要的一个知识点,这里我使用了函数结构图,来帮助我更好的理解 /* 原型链继承方式: 通过改变一个对象的原型对象的指向来继承另一个对象 原理: 我们知道,一 ...

  10. 解决此问题:Oracle 删除用户时报 “必须指定 CASCADE 以删除 'SE'”,

    这说明你要删除的oracle 用户"SE" 下面还有数据库对象,如 table, view 等,这样你删除用户时必须加选项 cascade:drop user se cascade ...