【题目】

n个数字(0,1,…,n-1)形成一个圆圈,从数字0开始,每次从这个圆圈中删除第m个数字(第一个为当前数字本身,第二个为当前数字的下一个数字)。当一个数字删除后,从被删除数字的下一个继续删除第m个数字。求出在这个圆圈中剩下的最后一个数字。

【分析】

本题就是有名的约瑟夫环问题。既然题目有一个数字圆圈,很自然的想法是我们用一个数据结构来模拟这个圆圈。在常用的数据结构中,我们很容易想到用环形列表。我们可以创建一个总共有m个数字的环形列表,然后每次从这个列表中删除第m个元素。

这种思路需要一个有n个结点的环形列表来模拟这个删除的过程,因此内存开销为O(n)。而且这种方法每删除一个数字需要m步运算,总共有n个数字,因此总的时间复杂度是O(mn)。当m和n都很大的时候,这种方法是很慢的。

接下来我们试着从数学上分析出一些规律。首先定义最初的n个数字(0,1,…,n-1)中最后剩下的数字是关于n和m的方程为f(n,m)。

f(n,m)的DP表达式为:

f(1,m)=0
f(n,m)=[f(n-1,m)+m]%n (n>=2)

证明略。

【代码】

 C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 
//f(1,m)=0
//f(n,m)=[f(n-1,m)+m]%n (n>=2)
int LastRemaining_Solution2(int n, unsigned int m)
{
    // invalid input
)
        ;

// if there are only one integer in the circle initially,
    // of course the last remaining one is 0
;

// find the last remaining one in the circle with n integers
; i <= n; i ++)
        lastinteger = (lastinteger + m) % i;

return lastinteger;
}

【参考】

http://zhedahht.blog.163.com/blog/static/2541117420072250322938/

http://en.wikipedia.org/wiki/Josephus_problem

14.约瑟夫环问题[JosephusProblem]的更多相关文章

  1. UVA 305 Joseph (约瑟夫环 打表)

     Joseph  The Joseph's problem is notoriously known. For those who are not familiar with the original ...

  2. hdu1443(约瑟夫环游戏的原理 用链表过的)

    Problem Description The Joseph's problem is notoriously known. For those who are not familiar with t ...

  3. C++版 - 剑指Offer 面试题45:圆圈中最后剩下的数字(约瑟夫环问题,ZOJ 1088:System Overload类似)题解

    剑指Offer 面试题45:圆圈中最后剩下的数字(约瑟夫环问题) 原书题目:0, 1, - , n-1 这n个数字排成一个圈圈,从数字0开始每次从圆圏里删除第m个数字.求出这个圈圈里剩下的最后一个数字 ...

  4. B. Counting-out Rhyme(约瑟夫环)

    Description n children are standing in a circle and playing the counting-out game. Children are numb ...

  5. poj 1012 &amp; hdu 1443 Joseph(约瑟夫环变形)

    题目链接: POJ  1012: id=1012">http://poj.org/problem?id=1012 HDU 1443: pid=1443">http:// ...

  6. 约瑟夫环用php实现

    百度百科的解释:约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数 ...

  7. HDU 5643 King's Game 【约瑟夫环】

    题意: 变形的约瑟夫环,最初为每个人编号1到n,第i次删去报号为i的人,然后从它的下一个人开始重新从1开始报号,问最终剩下第几号人? 分析: 首先看一下裸的约瑟夫环问题: 共n个人,从1开始报数,报到 ...

  8. F - System Overload(约瑟夫环变形)

    Description Recently you must have experienced that when too many people use the BBS simultaneously, ...

  9. POJ 3517 And Then There Was One( 约瑟夫环模板 )

    链接:传送门 题意:典型约瑟夫环问题 约瑟夫环模板题:n个人( 编号 1-n )在一个圆上,先去掉第m个人,然后从m+1开始报1,报到k的人退出,剩下的人继续从1开始报数,求最后剩的人编号 /**** ...

随机推荐

  1. Maven-在eclipse创建maven项目

    在eclipse使用maven则需要给eclipse安装maven插件,具体安装maven插件安装相关文章 构建Maven项目 以eclipse3.6为例 1)创建简单Maven项目 点击Eclips ...

  2. BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)

    一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...

  3. BZOJ-4195 NOI2015Day1T1 程序自动分析 并查集+离散化

    总的来说,这道题水的有点莫名奇妙,不过还好一次轻松A 4195: [Noi2015]程序自动分析 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 836 ...

  4. Serverlet程序

    Serverlet是用Java编写的服务器端程序;主要用于交互地浏览和修改数据,生成动态Web内容; 一个serverlet就是一个继承于HttpServlet抽象类的Java类:下面先看一个简单的例 ...

  5. Stream Byte[] 转换

    public byte[] StreamToBytes(Stream stream) { byte[] bytes = new byte[stream.Length]; stream.Read(byt ...

  6. C++ map 映照容器

    map映照容器的元素数据是一个键值和一个映照数据组成的,键值与映照数据之间具有一一映照的关系. map映照容器的数据结构是采用红黑树来实现的,插入键值的元素不允许重复,比较函数只对元素的键值进行比较, ...

  7. redis.conf

    redis示例配置文件 分类: redis2013-10-22 16:39 427人阅读 评论(0) 收藏 举报 转载自https://raw.github.com/antirez/redis/2.6 ...

  8. easyui datagrid 通过复选框删除新追加的数据问题

    之前写好的功能在保存好数据后再通过复选框删除是没有问题的,可现在想多追加几行,然后选择删除新追加的某几行或一行,通过$('#dg').datagrid('getChecked')方法返回选中行,然而返 ...

  9. chrome 阻止跨域操作的解决方法 --disable-web-security

    做chrome插件时,遇到https页面上请求htttp页面资源时被blocked的问题,初苦寻解决方法未果,最后找到: 给chrome加上 --disable-web-security 参数

  10. U盘中的autorun.inf

    怎么删除u盘里的autorun.inf 如果U盘中毒,刚插进机子时按住SHIFT五秒,这样就可以跳过预读,这样防止了预读时把病毒感染到机子上,在U盘盘符上点右键,看看有没有“Auto”选项: 1.如果 ...