【题目】

n个数字(0,1,…,n-1)形成一个圆圈,从数字0开始,每次从这个圆圈中删除第m个数字(第一个为当前数字本身,第二个为当前数字的下一个数字)。当一个数字删除后,从被删除数字的下一个继续删除第m个数字。求出在这个圆圈中剩下的最后一个数字。

【分析】

本题就是有名的约瑟夫环问题。既然题目有一个数字圆圈,很自然的想法是我们用一个数据结构来模拟这个圆圈。在常用的数据结构中,我们很容易想到用环形列表。我们可以创建一个总共有m个数字的环形列表,然后每次从这个列表中删除第m个元素。

这种思路需要一个有n个结点的环形列表来模拟这个删除的过程,因此内存开销为O(n)。而且这种方法每删除一个数字需要m步运算,总共有n个数字,因此总的时间复杂度是O(mn)。当m和n都很大的时候,这种方法是很慢的。

接下来我们试着从数学上分析出一些规律。首先定义最初的n个数字(0,1,…,n-1)中最后剩下的数字是关于n和m的方程为f(n,m)。

f(n,m)的DP表达式为:

f(1,m)=0
f(n,m)=[f(n-1,m)+m]%n (n>=2)

证明略。

【代码】

 C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 
//f(1,m)=0
//f(n,m)=[f(n-1,m)+m]%n (n>=2)
int LastRemaining_Solution2(int n, unsigned int m)
{
    // invalid input
)
        ;

// if there are only one integer in the circle initially,
    // of course the last remaining one is 0
;

// find the last remaining one in the circle with n integers
; i <= n; i ++)
        lastinteger = (lastinteger + m) % i;

return lastinteger;
}

【参考】

http://zhedahht.blog.163.com/blog/static/2541117420072250322938/

http://en.wikipedia.org/wiki/Josephus_problem

14.约瑟夫环问题[JosephusProblem]的更多相关文章

  1. UVA 305 Joseph (约瑟夫环 打表)

     Joseph  The Joseph's problem is notoriously known. For those who are not familiar with the original ...

  2. hdu1443(约瑟夫环游戏的原理 用链表过的)

    Problem Description The Joseph's problem is notoriously known. For those who are not familiar with t ...

  3. C++版 - 剑指Offer 面试题45:圆圈中最后剩下的数字(约瑟夫环问题,ZOJ 1088:System Overload类似)题解

    剑指Offer 面试题45:圆圈中最后剩下的数字(约瑟夫环问题) 原书题目:0, 1, - , n-1 这n个数字排成一个圈圈,从数字0开始每次从圆圏里删除第m个数字.求出这个圈圈里剩下的最后一个数字 ...

  4. B. Counting-out Rhyme(约瑟夫环)

    Description n children are standing in a circle and playing the counting-out game. Children are numb ...

  5. poj 1012 &amp; hdu 1443 Joseph(约瑟夫环变形)

    题目链接: POJ  1012: id=1012">http://poj.org/problem?id=1012 HDU 1443: pid=1443">http:// ...

  6. 约瑟夫环用php实现

    百度百科的解释:约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数 ...

  7. HDU 5643 King's Game 【约瑟夫环】

    题意: 变形的约瑟夫环,最初为每个人编号1到n,第i次删去报号为i的人,然后从它的下一个人开始重新从1开始报号,问最终剩下第几号人? 分析: 首先看一下裸的约瑟夫环问题: 共n个人,从1开始报数,报到 ...

  8. F - System Overload(约瑟夫环变形)

    Description Recently you must have experienced that when too many people use the BBS simultaneously, ...

  9. POJ 3517 And Then There Was One( 约瑟夫环模板 )

    链接:传送门 题意:典型约瑟夫环问题 约瑟夫环模板题:n个人( 编号 1-n )在一个圆上,先去掉第m个人,然后从m+1开始报1,报到k的人退出,剩下的人继续从1开始报数,求最后剩的人编号 /**** ...

随机推荐

  1. HDU2096 小明A+B

    入门级都没到的水题!看到顺便就做了,AC记录喜+1 Description 小明今年3岁了, 现在他已经能够认识100以内的非负整数, 并且能够进行100以内的非负整数的加法计算. 对于大于等于100 ...

  2. C++ 中常见预定义宏的使用

    http://blog.csdn.net/hgl868/article/details/7058906 替代字符串: #define DOWNLOAD_IMAGE_LOG /var/log/png.l ...

  3. ExtJS入门教程05,grid的异步加载数据

    上一篇演示了extjs grid的基本用法,并加载了本地数据.今天我们将演示如何加载异步数据. 所谓异步,就是通过ajax的方式将服务器端的数据加载到我们的grid中.为了提供数据,我们先定义一个数据 ...

  4. cheerio, dom操作模块

    cheerio 为服务器特别定制的,快速.灵活.实施的jQuery核心实现. Introduction 将HTML告诉你的服务器 var cheerio = require('cheerio'), $ ...

  5. IF IE

    1. <!--[if !IE]><!--> 除IE外都可识别 <!--<![endif]-->2. <!--[if IE]> 所有的IE可识别 & ...

  6. 锋利的jQuery-7--编写插件基础知识

    插件的基本要点: 1.命名推荐:jquery.[插件名].js,避免和其他js库插件混淆. 2.对象方法附加到:jQuery.fn上,全局函数附加到:jQuery对象本身. 3.在插件内部,this指 ...

  7. java.lang.NoClassDefFoundError: org/hibernate/cfg/Configuration解决方法

    Autowiring of fields failed; nested exception is...........Error creating bean with name 'siteOperat ...

  8. __stdcall,__cdecl,__fastcall的区别

    __stdcall,__cdecl,__fastcall的区别 标签: dll编译器pascalclassimportinitialization 2009-12-09 15:07 10472人阅读  ...

  9. Base64封装类

    using System;using System.Collections.Generic;using System.Linq;using System.Web; /// <summary> ...

  10. 三种dedecms调用相关文章的方法

    在文章的末尾或侧边栏添加相关文章可以提高用户的黏度,提高pv,增加se的好印象(哈哈),那么dedecms如何调用相关文章呢?有三种方法可以实现. 第一种dedecms调用相关文章的方法,用默认的li ...