题目链接

Problem Description

有N对双胞胎,他们的年龄分别是1,2,3,……,N岁,他们手拉手排成一队到野外去玩,要经过一根独木桥,为了安全起见,要求年龄大的和年龄小的排在一起,好让年龄大的保护年龄小的,然后从头到尾,每个人报告自己的年龄,就得到了一个年龄的序列。比如有4对双胞胎,他们报出来的年龄序列是:41312432。突然,他们中间最聪明的小明发现了一个有趣的现象,原来,这个年龄序列有一个规律,两个1中间有1个数,两个2中间有2个数,两个3中间有3个数,两个4中间有4个数。但是,如果是2对双胞胎,那么无论他们怎么排年龄序列,都不能满足这个规律。

你的任务是,对于给定的N对双胞胎,是否有一个年龄序列,满足这一规律,如果是,就输出Y,如果没有,输出N。

Input

共有若干行,每行一个正整数N<100000,表示双胞胎的数量;如果N=0,表示结束。

Output

共有若干行,每行一个正整数,表示对应输入行是否有一个年龄序列,满足这一规律,如果是,就输出Y,如果没有,输出N

Sample Input

4
2
1309
0

Sample Output

Y
N
N

分析:

这题可以这样来抽象:

n对数,大小为1、2、3、...、n。现要求两个1之间有1个数,两个2之间有2个数,以此类推,两个n之间有n个数。

并且,数的次序可以随意的。

解决之道:

准备知识:

①n对数,共2n个数。所以要有2n个位置来放置这2*n个数。②sum()表示求和运算。

正式解决:

①设k(k=1,2,..,n)放置的第一个位置为ak,第二个位置为bk。显然有bk-ak=k+1(假定下一个位置在上一个位置之前)。

那么会有sum(bk-ak)=2+3+4+...+(n+1)=(1+2+3+...+n)+(1+1+...+1)=n*(n+1)/2+n。

②又因为要有2n个位置来放置这2n个数。则sum(ak+bk)=1+2+3+...+2n=(1+2n)(2n)/2=(1+2n)n。

③sum(ak+bk)=sum(ak+ak+k+1)=sum(2ak+bk-ak)=2sum(ak)+sum(bk-ak)=2sum(ak)+n(n+1)/2+n。

④比较②③可得:(1+2n)n=2sum(ak)+n(n+1)/2+n。可得sum(ak)=n(3n-1)/4。

⑤就像前面已经说过的一样,ak表示数k第一次出现的位置。ak不易确定。当可以肯定的是sum(ak)一定为正整数。

那么就会有n=4p或者3n-1=4*p(p为正整数)。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <queue>
using namespace std;
int main()
{
int n;
while(cin>>n,n)
{
if(n%4==0||(3*n-1)%4==0)
printf("Y\n");
else
printf("N\n");
}
return 520;
}

HDU 2554 N对数的排列问题 ( 数学 )的更多相关文章

  1. HDU 2554 N对数的排列问题

    LINK:HDU 2554 这是昨天晚上小练里面比较有趣的一道题~我在做的时候思路错了,以为数字的排列会有规律,结果后面发现就算有也很难找......╮(╯▽╰)╭ 看了网上的题解,有一种恍然大悟的感 ...

  2. (step7.2.3)hdu 2554(N对数的排列问题——简单数论)

    题目大意:输入一个整数n,表示有n对整数.判断能否出现一种情况就是2个1之间有1个数,2个2之间有2个数..... 解题思路: 准备知识: ①n对数,共2*n个数.所以要有2*n个位置来放置这2*n个 ...

  3. hud 2554 N对数的排列问题 (规律)

    题目链接 Problem Description 有N对双胞胎,他们的年龄分别是1,2,3,--,N岁,他们手拉手排成一队到野外去玩,要经过一根独木桥,为了安全起见,要求年龄大的和年龄小的排在一起,好 ...

  4. N对数的排列问题 HDU - 2554

    N对数的排列问题 HDU - 2554 有N对双胞胎,他们的年龄分别是1,2,3,……,N岁,他们手拉手排成一队到野外去玩,要经过一根独木桥,为了安全起见,要求年龄大的和年龄小的排在一起,好让年龄大的 ...

  5. HDU 5073 Galaxy (2014 Anshan D简单数学)

    HDU 5073 Galaxy (2014 Anshan D简单数学) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5073 Description G ...

  6. HDU 5478 Can you find it 随机化 数学

    Can you find it Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...

  7. hdu2554-N对数的排列问题

    http://acm.hdu.edu.cn/showproblem.php?pid=2554 假设所有的2n个数据的位置分别从1~2n标号. 现在假设其中第ai个数据(双胞胎),和bi.那么他们的位置 ...

  8. HDU 5441 Travel (并查集+数学+计数)

    题意:给你一个带权的无向图,然后q(q≤5000)次询问,问有多少对城市(城市对(u,v)与(v,u)算不同的城市对,而且u≠v)之间的边的长度不超过d(如果城市u到城市v途经城市w, 那么需要城市u ...

  9. hdu 5392 Infoplane in Tina Town(数学)

    Problem Description There is a big stone with smooth surface in Tina Town. When people go towards it ...

随机推荐

  1. android开源项目之OTTO事件总线(二)官方demo解说

    官方demo见  https://github.com/square/otto 注意自己该编译版本为2.3以上,默认的1.6不支持match_parent属性,导致布局文件出错. 另外需要手动添加an ...

  2. Ubuntu 手机 app开发学习0

    # 相关网址 http://developer.ubuntu.com/zh-cn/apps/sdk/ 0. 环境搭建 首选需要一个Ubuntu 14.04操作系统.没啥好讲的,直接安装了一个虚拟机. ...

  3. ASP.NET MVC 使用jquery.form.js 异步上传 在IE下返回值被变为下载的解决办法

    错误记录: <script type="text/javascript"> $(function () { $(document).off("ajaxSend ...

  4. 发布npm包 登录报错 E409 Conflict

    1.到官网注册个账号,并且验证完邮箱:https://www.npmjs.com/ 2.打开cmd命令行 登录:$npm login 根据提示 一步步完成登录. 3.新建一个项目文件夹: npmtes ...

  5. 「赛后补题」HBCPC2018题目代码与思路简析

    这次比赛(2018年第二届河北省大学生程序设计竞赛)虽然没有打,但是题目还是要写的.未完成的题目(还差比较硬核的四题)和思路分析会陆续更新完. Problem A 2011 Mex Query /* ...

  6. cpp语言程序设计教程第七章的一道编程题

    题目如下 按下列要求实现一个有关学生成绩的操作. 该类名为Student. (1)每个学生的信息包含有姓名(字符数组)和成绩(int型). (2)共有5个学生,用对象数组表示. (3)计算出5个学生中 ...

  7. python之*args和**kwargs参数,以及迭代器

    *args让函数可以接受不限制多个位置参数,**kwargs让函数可以接受不限制多个关键字参数,用法如图 2.迭代器总结

  8. HDU 1698 Just a Hook(线段树区间覆盖)

    线段树基本操作练习,防手生 #include <cstdio> #include <cstring> #include <cstdlib> #define lson ...

  9. js调用本地office打开服务器的office文件预览

    本来是想做成直接在网页上在线预览office文件的,但是找了好多,要不是收费,要不就是要调用别人的API不安全,所以纠结了好久还是用调用本地的office预览office文件. 废话不多说,那么怎么调 ...

  10. Friends and Enemies(思维)

    Friends and Enemies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...