bzoj 2820 mobius反演
学了一晚上mobius,终于A了一道了。。。。
假设枚举到i,质数枚举到p(程序里的prime[j]),要更新A=i*p的信息。
1. p|i
这时A的素数分解式中,p这一项的次数>=2。
考虑g(A)的求和式:
如果枚举的质数p'不等于p,A/p'就也会有p这一项,次数>=2,这时候miu(A/p')=0
如果枚举的质数p'=p,A/p=i,这一项就是miu(i)
因此g(A)=miu(i)
2. p!|i (即i%p!=0)
这时候A比i多一个质因子p,对miu(i)分情况讨论。
2.1 miu(i)==0 (即i有大于1次的项)
这时A除去任何一个p'都会留下i的那个大于1次的项,除非是下面这一种非常特殊的情况:
2.1.1 i的素数分解式中,大于1次的项只有一个,且这一项为2次。记这一项为p0。
这时除去任何一个p'!=p0都会留下这一项,但是除去p0则会得到A/p0——这个数所有的项都是1次的。因此g(A)=miu(A/p0)
2.1.2 i的素数分解式大于1次的项不止一个 或者 大于1次的项唯一,但次数高于2次。易见g(A)=0
2.2 miu(i)!=0 (即i全是1次) 这个时候A的项也全是1次。设r(x)为x的质因子个数。
则可以得到g(A)=r(A)*(-1)^(r(A)-1)。因为除以任何一个p',miu(A/p')都是一样的。
同理g(i)=r(i)*(-1)^(r(i)-1),且有r(A)=r(i)+1。 利用r(A)=r(i)+1可以方便地得到:g(A)和g(i)异号,且绝对值比g(i)多1。
亦即g(A)=(g(i)>0)?-1:1 -g(i)
看情况2.1.1,我们有这么个遗留问题:
如果x的大于1次的项唯一,且这一项为2次,则令f(x)为这个项,否则f(x)=1。
事实上f(x)=1包含3种情况:
1. 大于1的项不唯一
2. 大于1次的项唯一但大于2次。
3. 全为1次
1和2利用现有的结果无法区分,但事实上不需要区分。3则可以用miu(x)判出来。
好,我们来对付f(x),仍然是线性筛,变量意义同g(x)的讨论。
1. p|i
A由i把最小因子p的次数加1得到,显然这一项的次数>=2。
1.1 f(i)!=1
1.1.1 如果f(i)=p,那么A中p的次数就是3次了,f(A)=1。
1.1.2 如果f(i)!=p,那么A中大于1次的项就不唯一了,仍有f(A)=1
因此f(i)!=1必然有f(A)=1
1.2 i全为1次 即f(i)=1且miu(i)!=0 这时显然f(A)=p
1.3 i不全为1次 即f(i)=1且miu(i)=0 这时显然f(A)=1
2. p!|i
A比i多一个1次的质因数p,那么应有f(A)=f(i)
//By BLADEVIL
var
mu, prime, mindiv, g, f :array[..] of longint;
gs :array[..] of int64;
n, m, tt :longint;
ans :int64; procedure init;
var
i, j, a :longint;
begin
mu[]:=;
for i:= to do
begin
if mindiv[i]= then
begin
inc(prime[]);
prime[prime[]]:=i;
mindiv[i]:=i;
mu[i]:=-;
f[i]:=;
g[i]:=;
end;
for j:= to prime[] do
begin
if i*prime[j]> then break;
a:=i*prime[j];
mindiv[a]:=prime[j];
if i mod prime[j]<> then
begin
mu[a]:=-mu[i];
f[a]:=f[i];
if mu[i]= then
begin
if f[i]<> then g[a]:=mu[a div f[i]] else g[a]:=;
end else
begin
if g[i]> then g[a]:=-g[i]- else g[a]:=-g[i]+;
end;
end else
begin
mu[a]:=;
if f[i]= then
if mu[i]= then f[a]:= else f[a]:=prime[j] else
f[a]:=;
g[a]:=mu[i];
break;
end;
end;
end;
for i:= to do gs[i]:=gs[i-]+g[i];
end; procedure main;
var
k, i :longint;
t, t1, t2 :longint; begin
read(tt);
for k:= to tt do
begin
read(n,m);
if n<m then
begin
t:=n; n:=m; m:=t;
end;
ans:=;
i:=;
while i<=m do
begin
t1:=n div (n div i);
t2:=m div (m div i);
if t1<t2 then t:=t1 else t:=t2;
ans:=ans+(gs[t]-gs[i-])*(n div i)*(m div i);
i:=t+;
end;
writeln(ans);
end; end; begin
init;
main;
end.
bzoj 2820 mobius反演的更多相关文章
- bzoj 2820 莫比乌斯反演
搞了一整个晚自习,只是看懂了dalao们的博客,目前感觉没有思路-.还是要多切题 next day: 刚才又推了一遍,发现顺过来了,hahaha #include<cstdio> #inc ...
- bzoj 2820 / SPOJ PGCD 莫比乌斯反演
那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j= ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 莫比乌斯反演 BZOJ 2820
莫比乌斯反演真(TMD)难学.我自看了好长时间. BZOJ 2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1384 Sol ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- mobius反演讲解
mobius反演的基本形式为,假设知道函数F(x)=Σf(d) d|x,那么我们可以推出f(x)=Σmiu(d)*F(x/d) d|x,另一基本形式为假设知道函数F(x)=Σf(d) x|d,那么我们 ...
- [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛
Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...
- Note -「Mobius 反演」光速入门
目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...
随机推荐
- android开源项目之OTTO事件总线(一)
Otto是由Square发布的一个着重于Android支持的基于Guava的强大的事件总线,在对应用程序不同部分进行解耦之后,仍然允许它们进行有效的沟通. 开源项目地址:https://github. ...
- adb常用命令(手机测试)
ADB安装与常用命令详解 一.ADB意义 adb的全称为Android Debug Bridge,就是起到 ...
- 定时爬虫抓当日免费应用:Scrapy + Tkinter + LaunchControl
花了个周末学了下Scrapy,正好一直想买mindnode,于是顺手做了个爬虫,抓取爱范儿每天的限免应用信息. Thinking 大概思路就是使用LaunchControl每天定时(比如早上9点50, ...
- Leetcode 672.灯泡开关II
灯泡开关II 现有一个房间,墙上挂有 n 只已经打开的灯泡和 4 个按钮.在进行了 m 次未知操作后,你需要返回这 n 只灯泡可能有多少种不同的状态. 假设这 n 只灯泡被编号为 [1, 2, 3 . ...
- Hyper-v创建检查点(VM的快照功能)
一. 问题描述 在Hyper的默认设置中没有创建检查点的功能,是因为他启用的并不是标准设置.设置检查点时会 二. 解决方法 再设置检查点就没问题了
- HDU 3689 Infinite monkey theorem(DP+trie+自动机)(2010 Asia Hangzhou Regional Contest)
Description Could you imaging a monkey writing computer programs? Surely monkeys are smart among ani ...
- POJ 2162 Document Indexing(模拟)
Description Andy is fond of old computers. He loves everything about them and he uses emulators of o ...
- [转]Linux UDP严重丢包问题的解决
测试系统在Linux上的性能发现丢包率极为严重,发210000条数据,丢包达110000之巨,丢包率超过50%.同等情形下Windows上测试,仅丢几条数据.形势严峻,必须解决.考虑可能是因为协议栈B ...
- EasyUI 显示表单数据 小记
界面图:
- io学习2-磁盘阵列RAID
磁盘阵列 RAID(Redundant ArrayOf Inexpensive Disks) 如果你是一位数据库管理员或者经常接触服务器,那对RAID应该很熟悉了,作为最廉价的存储解决方案,RAID早 ...