学了一晚上mobius,终于A了一道了。。。。

假设枚举到i,质数枚举到p(程序里的prime[j]),要更新A=i*p的信息。

1. p|i
    这时A的素数分解式中,p这一项的次数>=2。

考虑g(A)的求和式:

如果枚举的质数p'不等于p,A/p'就也会有p这一项,次数>=2,这时候miu(A/p')=0

如果枚举的质数p'=p,A/p=i,这一项就是miu(i)

因此g(A)=miu(i)
2. p!|i (即i%p!=0)

这时候A比i多一个质因子p,对miu(i)分情况讨论。

2.1 miu(i)==0 (即i有大于1次的项)

这时A除去任何一个p'都会留下i的那个大于1次的项,除非是下面这一种非常特殊的情况:

2.1.1 i的素数分解式中,大于1次的项只有一个,且这一项为2次。记这一项为p0。

这时除去任何一个p'!=p0都会留下这一项,但是除去p0则会得到A/p0——这个数所有的项都是1次的。因此g(A)=miu(A/p0)

2.1.2 i的素数分解式大于1次的项不止一个 或者 大于1次的项唯一,但次数高于2次。易见g(A)=0

2.2 miu(i)!=0 (即i全是1次) 这个时候A的项也全是1次。设r(x)为x的质因子个数。

则可以得到g(A)=r(A)*(-1)^(r(A)-1)。因为除以任何一个p',miu(A/p')都是一样的。

同理g(i)=r(i)*(-1)^(r(i)-1),且有r(A)=r(i)+1。 利用r(A)=r(i)+1可以方便地得到:g(A)和g(i)异号,且绝对值比g(i)多1。

亦即g(A)=(g(i)>0)?-1:1 -g(i)

看情况2.1.1,我们有这么个遗留问题:

如果x的大于1次的项唯一,且这一项为2次,则令f(x)为这个项,否则f(x)=1。

事实上f(x)=1包含3种情况:

1. 大于1的项不唯一

2. 大于1次的项唯一但大于2次。

3. 全为1次

1和2利用现有的结果无法区分,但事实上不需要区分。3则可以用miu(x)判出来。

好,我们来对付f(x),仍然是线性筛,变量意义同g(x)的讨论。

1. p|i

A由i把最小因子p的次数加1得到,显然这一项的次数>=2。

1.1 f(i)!=1

1.1.1 如果f(i)=p,那么A中p的次数就是3次了,f(A)=1。

1.1.2 如果f(i)!=p,那么A中大于1次的项就不唯一了,仍有f(A)=1

因此f(i)!=1必然有f(A)=1

1.2 i全为1次 即f(i)=1且miu(i)!=0 这时显然f(A)=p

1.3 i不全为1次 即f(i)=1且miu(i)=0 这时显然f(A)=1

2. p!|i

A比i多一个1次的质因数p,那么应有f(A)=f(i)

//By BLADEVIL
var
mu, prime, mindiv, g, f :array[..] of longint;
gs :array[..] of int64;
n, m, tt :longint;
ans :int64; procedure init;
var
i, j, a :longint;
begin
mu[]:=;
for i:= to do
begin
if mindiv[i]= then
begin
inc(prime[]);
prime[prime[]]:=i;
mindiv[i]:=i;
mu[i]:=-;
f[i]:=;
g[i]:=;
end;
for j:= to prime[] do
begin
if i*prime[j]> then break;
a:=i*prime[j];
mindiv[a]:=prime[j];
if i mod prime[j]<> then
begin
mu[a]:=-mu[i];
f[a]:=f[i];
if mu[i]= then
begin
if f[i]<> then g[a]:=mu[a div f[i]] else g[a]:=;
end else
begin
if g[i]> then g[a]:=-g[i]- else g[a]:=-g[i]+;
end;
end else
begin
mu[a]:=;
if f[i]= then
if mu[i]= then f[a]:= else f[a]:=prime[j] else
f[a]:=;
g[a]:=mu[i];
break;
end;
end;
end;
for i:= to do gs[i]:=gs[i-]+g[i];
end; procedure main;
var
k, i :longint;
t, t1, t2 :longint; begin
read(tt);
for k:= to tt do
begin
read(n,m);
if n<m then
begin
t:=n; n:=m; m:=t;
end;
ans:=;
i:=;
while i<=m do
begin
t1:=n div (n div i);
t2:=m div (m div i);
if t1<t2 then t:=t1 else t:=t2;
ans:=ans+(gs[t]-gs[i-])*(n div i)*(m div i);
i:=t+;
end;
writeln(ans);
end; end; begin
init;
main;
end.

bzoj 2820 mobius反演的更多相关文章

  1. bzoj 2820 莫比乌斯反演

    搞了一整个晚自习,只是看懂了dalao们的博客,目前感觉没有思路-.还是要多切题 next day: 刚才又推了一遍,发现顺过来了,hahaha #include<cstdio> #inc ...

  2. bzoj 2820 / SPOJ PGCD 莫比乌斯反演

    那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j= ...

  3. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  4. 莫比乌斯反演 BZOJ 2820

    莫比乌斯反演真(TMD)难学.我自看了好长时间. BZOJ 2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1384  Sol ...

  5. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  6. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  7. mobius反演讲解

    mobius反演的基本形式为,假设知道函数F(x)=Σf(d) d|x,那么我们可以推出f(x)=Σmiu(d)*F(x/d) d|x,另一基本形式为假设知道函数F(x)=Σf(d) x|d,那么我们 ...

  8. [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛

    Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...

  9. Note -「Mobius 反演」光速入门

    目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...

随机推荐

  1. ThinkPHP5 Model分层及多对多关联的建立

    笔者最近入手ThinkPHP5,准备用它来实现一个学生作业管理系统.简单的说就是学生在上面交老师布置的课程作业,老师也可以发布修改作业.过程中势必会碰到学生.班级和老师之间的关系.它们之间的关系是多对 ...

  2. ASP.NET MVC5.0 OutputCache不起效果

    按照官网文档(https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/controllers-and-routing ...

  3. django视图之分页

    在网站开发时,肯定会遇到分页的事情需要处理,在django中也是如此,在Django中处理分页一般会使用到两个类django.core.paginator.Paginator和django.core. ...

  4. ajax 异步刷新,需要填写的参数

    参数 options 类型:Object 可选.AJAX 请求设置.所有选项都是可选的. ******* async 类型:Boolean 默认值: true.默认设置下,所有请求均为异步请求.如果需 ...

  5. HDU 4433 locker(DP)(2012 Asia Tianjin Regional Contest)

    Problem Description A password locker with N digits, each digit can be rotated to 0-9 circularly.You ...

  6. Postmortem Report 第一轮迭代事后分析报告

    一.设想和目标 1.1 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件<BlueZ>是一款全新动作类塔防游戏.与市面上已经存在的塔防游戏不同 ...

  7. 如何创建LocalDB数据库和数据库实例

    LocalDB是SQL Server 2012带来的新特性,它是一个专门为开发人员量身定制的轻量级数据库,下面介绍如何使用它. 创建LocalDB数据库的方法: 打开服务器资源管理器,右键点击“数据连 ...

  8. [Java文件操作] 将素数输出到文件

    [要求]编写程序求出10万以内的所有素数,并将这些素数输出到一个文本文件中,每行文本只包含一个素数数据. import java.util.*; import java.io.*; public cl ...

  9. Hadoop上配置Hbase数据库

    已有环境: 1. Ubuntu:14.04.2 2.jdk: 1.8.0_45 3.hadoop:2.6.0 4.hBase:1.0.0 详细过程: 1.下载最新的Hbase,这里我下载的是hbase ...

  10. 计蒜客16495 Truefriend(fwt)

    #include <iostream> #include <cstring> #include <cstdio> using namespace std; type ...