扩展欧几里得算法模板

#include <cstdio>
#include <cstring>
#define ll long long using namespace std; ll extend_gcd(ll a, ll b, ll &x, ll &y)
{
if(b == )
{
x = , y = ;
return a;
}
else
{
ll r = extend_gcd(b, a%b, y, x);
y -= x*(a/b);
return r;
}
}

1.对于形如a*x0 + b*y0 = n的不定方程为了求解x0和y0,可以通过扩展欧几里得先求出满足a*x + b*y = gcd(a, b)的x和y。

2.容易得到,若(x-y)%gcd(a,b)==0,则该不定方程有整数解,否则无符合条件的整数解。

3.得到x和y后,可以通过x0 = x*n / gcd(a, b)这个x0相当关键,求出x0.

4.在实际问题当中,我们需要的往往是最小整数解,我们可以通过下面的方法求出最小整数解:

    令t = b/gcd(a, b),x是方程a*x + b*y = n的一个特解,则xmin = (x % t + t) % t

                       青蛙的约会

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 113227   Accepted: 23091

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

分析:
当两只青蛙跳t步后,A的坐标为x+mt-p1L(p1∈Z且x+mt-p1L<L),B的坐标为y+nt-p2L(p2∈Z且y+nt-p2L<L), A和B相遇的充分必要条件是x+mt-p1L = y+nt-p2L。
整理可得 (x-y) + (m-n)t = (p1-p2)L, 即 (n-m)t + (p1-p2)L = x-y
设p = p1 - p2 整理得 (n-m) * t + L * p = x-y   
看出a * x + b * y = gcd(a, b)的样子了没?
 
调用extend_gcd(n-m, L, t, p)可以算出gcd(n-m, L), t, p。之后再用上面的方法算出最小整数解就可以了。
 
#include "cstdio"
#include "iostream"
using namespace std;
#define LL long long
LL extgcd(LL a,LL b,LL&x,LL&y)///模板
{
if(b==){
x=;y=;
return a;
}
LL ans=extgcd(b,a%b,y,x);
y-=a/b*x;
return ans;
} int main()
{
LL n,m,t,l,x,y,p;
while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l))
{
LL ans=extgcd(n-m,l,t,p);
if((x-y)%ans){///1.
printf("Impossible\n");
}
else
{
///求最小整数解的算法
t=(x-y)/ans*t;///首先令x为一个特解 2.
LL temp=(l/ans);
t=(t%temp+temp)%temp;///再根据公式计算 3.
printf("%lld\n",t);
}
}
}
总结:对于此类题,
我们需要做的是,1.看懂公式熟记公式
        2.吸收这份来自数学的伟大力量

POJ1061-青蛙的约会---扩展欧几里德算法求最小整数解的更多相关文章

  1. POJ1061青蛙的约会(扩展欧几里德算法)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 102239   Accepted: 19781 Descript ...

  2. POJ-1061青蛙的约会,扩展欧几里德求逆元!

                                                               青蛙的约会 以前不止一次看过这个题,但都没有去补..好吧,现在慢慢来做. 友情提示 ...

  3. poj1061 青蛙的约会 扩展欧几里德的应用

    这个题解得改一下,开始接触数论,这道题目一开始是看了别人的思路做的,后来我又继续以这种方法去做题,发现很困难,学长告诉我先看书,把各种词的定义看懂了,再好好学习,我做了几道朴素的欧几里德,尽管是小学生 ...

  4. POJ1061——青蛙的约会(扩展欧几里德)

    青蛙的约会 Description两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...

  5. 青蛙的约会 (ax+by=c求最小整数解)【拓展欧几里得】

                                                  青蛙的约会(点击跳转) 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住 ...

  6. poj1061青蛙的约会 (扩展欧几里德)

    Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...

  7. POJ - 1061 扩展欧几里德算法+求最小正整数解

    //#pragma comment(linker, "/STACK:1024000000,1024000000") //#pragma GCC optimize(2) #inclu ...

  8. POJ1061 青蛙的约会 —— 扩展gcd

    题目链接:https://vjudge.net/problem/POJ-1061 青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  9. 解题报告:poj1061 青蛙的约会 - 扩展欧几里得算法

    青蛙的约会 writer:pprp Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 119716 Accepted: 25238 ...

随机推荐

  1. MVC中输入的保护验证用:HttpServerUtility.HtmlEncode

    安全说明: 上面的代码使用HttpServerUtility.HtmlEncode来保护应用程序的恶意输入 (即 JavaScript).详细信息请参阅如何: 在 Web 应用程序,通过应用 HTML ...

  2. 导入execl到数据库mysql

    GwykhrenyuankuList <body jwcid="$content$"> <span jwcid="@components/AppBord ...

  3. 30分钟快速搭建Web CRUD的管理平台--django神奇魔法

    加上你的准备的时间,估计30分钟完全够用了,因为最近在做爬虫管理平台,想着快速开发,没想到python web平台下有这么非常方便的框架,简洁而优雅.将自己的一些坑总结出来,方便给大家的使用. 准备环 ...

  4. Java Set集合(HashSet、TreeSet)

    什么是HashSet?操作过程是怎么样的? 1.HashSet底层实际上是一个HashMap,HashMap底层采用了哈希表数据结构 2.哈希表又叫做散列表,哈希表底层是一个数组,这个数组中每一个元素 ...

  5. Struts2(四.注册时检查用户名是否存在及Action获取数据的三种方式)

    一.功能 1.用户注册页面 <%@ page language="java" contentType="text/html; charset=UTF-8" ...

  6. Laxcus大数据管理系统2.0 (1) - 摘要和目录

    Laxcus大数据管理系统 (version 2.0) Laxcus大数据实验室 摘要 Laxcus是Laxcus大数据实验室全体系全功能设计研发的多用户多集群大数据管理系统,支持一到百万台级节点,提 ...

  7. 21天学习caffe(一)

    ubuntu环境安装caffe1 安装依赖 apt-get install libatlas-base-dev apt-get install python-dev apt-get install l ...

  8. LeetCode 86 ——分隔链表

    1. 题目 2. 解答 从前向后遍历链表,将结点值小于 x 的结点放入到新链表 1 中,将结点值大于等于 x 的结点放入新链表 2 中.最后,将新链表 2 拼接在新链表 1 后面即可. /** * D ...

  9. BZOJ 3670 NOI2014 动物园 KMP+dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3670 题意概述:令num[i]表示字符串由1~i的字符形成的前缀中不相重叠的相同前后缀的数 ...

  10. Java面试题(下)

    这部分主要是开源Java EE框架方面的内容,包括hibernate.MyBatis.spring.Spring MVC等,由于Struts 2已经是明日黄花,在这里就不讨论Struts 2的面试题, ...