扩展欧几里得算法模板

  1. #include <cstdio>
  2. #include <cstring>
  3. #define ll long long
  4.  
  5. using namespace std;
  6.  
  7. ll extend_gcd(ll a, ll b, ll &x, ll &y)
  8. {
  9. if(b == )
  10. {
  11. x = , y = ;
  12. return a;
  13. }
  14. else
  15. {
  16. ll r = extend_gcd(b, a%b, y, x);
  17. y -= x*(a/b);
  18. return r;
  19. }
  20. }

1.对于形如a*x0 + b*y0 = n的不定方程为了求解x0和y0,可以通过扩展欧几里得先求出满足a*x + b*y = gcd(a, b)的x和y。

2.容易得到,若(x-y)%gcd(a,b)==0,则该不定方程有整数解,否则无符合条件的整数解。

3.得到x和y后,可以通过x0 = x*n / gcd(a, b)这个x0相当关键,求出x0.

4.在实际问题当中,我们需要的往往是最小整数解,我们可以通过下面的方法求出最小整数解:

    令t = b/gcd(a, b),x是方程a*x + b*y = n的一个特解,则xmin = (x % t + t) % t

                       青蛙的约会

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 113227   Accepted: 23091

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

  1. 1 2 3 4 5

Sample Output

  1. 4
  2.  
  3. 分析:
当两只青蛙跳t步后,A的坐标为x+mt-p1L(p1∈Z且x+mt-p1L<L),B的坐标为y+nt-p2L(p2∈Z且y+nt-p2L<L), A和B相遇的充分必要条件是x+mt-p1L = y+nt-p2L。
整理可得 (x-y) + (m-n)t = (p1-p2)L, 即 (n-m)t + (p1-p2)L = x-y
设p = p1 - p2 整理得 (n-m) * t + L * p = x-y   
看出a * x + b * y = gcd(a, b)的样子了没?
 
调用extend_gcd(n-m, L, t, p)可以算出gcd(n-m, L), t, p。之后再用上面的方法算出最小整数解就可以了。
 
  1. #include "cstdio"
  2. #include "iostream"
  3. using namespace std;
  4. #define LL long long
  5. LL extgcd(LL a,LL b,LL&x,LL&y)///模板
  6. {
  7. if(b==){
  8. x=;y=;
  9. return a;
  10. }
  11. LL ans=extgcd(b,a%b,y,x);
  12. y-=a/b*x;
  13. return ans;
  14. }
  15.  
  16. int main()
  17. {
  18. LL n,m,t,l,x,y,p;
  19. while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l))
  20. {
  21. LL ans=extgcd(n-m,l,t,p);
  22. if((x-y)%ans){///1.
  23. printf("Impossible\n");
  24. }
  25. else
  26. {
  27. ///求最小整数解的算法
  28. t=(x-y)/ans*t;///首先令x为一个特解 2.
  29. LL temp=(l/ans);
  30. t=(t%temp+temp)%temp;///再根据公式计算 3.
  31. printf("%lld\n",t);
  32. }
  33. }
  34. }
  1. 总结:对于此类题,
    我们需要做的是,1.看懂公式熟记公式
            2.吸收这份来自数学的伟大力量

POJ1061-青蛙的约会---扩展欧几里德算法求最小整数解的更多相关文章

  1. POJ1061青蛙的约会(扩展欧几里德算法)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 102239   Accepted: 19781 Descript ...

  2. POJ-1061青蛙的约会,扩展欧几里德求逆元!

                                                               青蛙的约会 以前不止一次看过这个题,但都没有去补..好吧,现在慢慢来做. 友情提示 ...

  3. poj1061 青蛙的约会 扩展欧几里德的应用

    这个题解得改一下,开始接触数论,这道题目一开始是看了别人的思路做的,后来我又继续以这种方法去做题,发现很困难,学长告诉我先看书,把各种词的定义看懂了,再好好学习,我做了几道朴素的欧几里德,尽管是小学生 ...

  4. POJ1061——青蛙的约会(扩展欧几里德)

    青蛙的约会 Description两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...

  5. 青蛙的约会 (ax+by=c求最小整数解)【拓展欧几里得】

                                                  青蛙的约会(点击跳转) 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住 ...

  6. poj1061青蛙的约会 (扩展欧几里德)

    Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...

  7. POJ - 1061 扩展欧几里德算法+求最小正整数解

    //#pragma comment(linker, "/STACK:1024000000,1024000000") //#pragma GCC optimize(2) #inclu ...

  8. POJ1061 青蛙的约会 —— 扩展gcd

    题目链接:https://vjudge.net/problem/POJ-1061 青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  9. 解题报告:poj1061 青蛙的约会 - 扩展欧几里得算法

    青蛙的约会 writer:pprp Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 119716 Accepted: 25238 ...

随机推荐

  1. 【Consul】关于健康检查的一点思考

    健康检查是Consul提供的一项主要功能,其配置格式如下: { "check": { "id": "redis", "name&q ...

  2. 【Consul】Consul架构-Consensus协议

    Consul使用Consensus协议提供一致性(Consistency)--CAP定义的一致性.Consensus协议是基于"Raft:In search of an Understand ...

  3. Linux上jdk的安装(CentOS6.5)

    centos openjdk 安装 http://www.cnblogs.com/ilahsa/archive/2012/12/11/2813059.html 知CentOS6.5桌面版默认安装的是J ...

  4. Qt irrlicht(鬼火)3D引擎 摄像机旋转问题

    点击打开链接Irrlicht中的摄像有一个函数 setUpVector() if (m_device != 0 ) { core::vector3df rotation(y,x,0.f); m_cam ...

  5. 把python脚本打包成win可执行文件

    前几天有个朋友找我写一点小东西,写好后把代码发他帮他搞了半天,结果愣是没听懂,就找到了这个办法. 1.导入pyinstaller包, pip install pyinstaller 2.进入到你需要打 ...

  6. C 计算金额

    #include <stdio.h> int main(int argc, char **argv) { \\定义两个变量 a金额 z跟票面 int a=0; int z=0;\\ 输入金 ...

  7. python第三天(dictionary应用)转

    1.题目: python实现英文文章中出现单词频率的统计   前言: 这道题在实际应用场景中使用比较广泛,比如统计历年来四六级考试中出现的高频词汇,记得李笑来就利用他的编程技能出版过一本背单词的畅销书 ...

  8. Cassandra 数据库设计

    Cassandra 2.* CQL3.1 最近更新:2015-10-30 索引的设计 在Cassandra中经常会发现,索引不够用,不好用,各种不强大. 比如,我关注的人的需求uid + follow ...

  9. 线段树——hdu1166敌兵布阵

    一.题目回顾 题目链接:敌兵布阵 Problem Description C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了.A国在海岸线沿直线布置了N个 ...

  10. 【EasyNetQ】- 订阅

    EasyNetQ订阅者订阅消息类型(消息类的.NET类型).一旦通过调用Subscribe方法设置了对类型的订阅,就会在RabbitMQ代理上创建一个持久队列,并且该类型的任何消息都将被放置在队列中. ...