POJ Widget Factory 【求解模线性方程】
传送门:http://poj.org/problem?id=2947
Widget Factory
| Time Limit: 7000MS | Memory Limit: 65536K | |
| Total Submissions: 7109 | Accepted: 2496 |
Description
The factory is currently in a state of complete chaos: recently, the factory has been bought by a new owner, and the new director has fired almost everyone. The new staff know almost nothing about building widgets, and it seems that no one remembers how many days are required to build each diofferent type of widget. This is very embarrassing when a client orders widgets and the factory cannot tell the client how many days are needed to produce the required goods. Fortunately, there are records that say for each widgeteer the date when he started working at the factory, the date when he was fired and what types of widgets he built. The problem is that the record does not say the exact date of starting and leaving the job, only the day of the week. Nevertheless, even this information might be helpful in certain cases: for example, if a widgeteer started working on a Tuesday, built a Type 41 widget, and was fired on a Friday,then we know that it takes 4 days to build a Type 41 widget. Your task is to figure out from these records (if possible) the number of days that are required to build the different types of widgets.
Input
4 WED SUN
13 18 1 13
Note that the widgeteers work 7 days a week, and they were working on every day between their first and last day at the factory (if you like weekends and holidays, then do not become a widgeteer!).
The input is terminated by a test case with n = m = 0 .
Output
Sample Input
2 3
2 MON THU
1 2
3 MON FRI
1 1 2
3 MON SUN
1 2 2
10 2
1 MON TUE
3
1 MON WED
3
0 0
Sample Output
8 3
Inconsistent data.
Hint
Source
题意概括:
给N种零件,M次工人的工作记录,每次记录包括 该工人处理了的零件数 、星期几开始 和 星期几结束(可能相隔很多个星期)。求制造每种零件所需要的时间。
解题思路:
N种零件就是N个未知数,M次操作就是M个方程。
根据M次操作构造出增广矩阵,高斯消元,不过求解过程要加上取模操作;
最后输出答案是特判一下答案是否小于等于2,如果是需要+7,因为我们运算的时候是取模运算,根据题意可知零件加工天数范围在【3,9】;
AC code:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#define INF 0x3f3f3f3f
using namespace std;
const int MAXN = ; int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元 inline int gcd(int a,int b) //最大公约数
{
int t;
while(b!=)
{
t=b;
b=a%b;
a=t;
}
return a;
} inline int lcm(int a,int b) //最小公倍数
{
return a/gcd(a,b)*b; //先除后乘防溢出
} int Gauss(int equ,int var)
{
int i,j,k;
int max_r;// 当前这列绝对值最大的行.
int col;//当前处理的列
int ta,tb;
int LCM;
int temp;
int free_x_num;
int free_index; for(int i=;i<=var;i++)
{
x[i]=;
free_x[i]=true;
} //转换为阶梯阵.
col=; // 当前处理的列
for(k = ;k < equ && col < var;k++,col++)
{// 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
max_r=k;
for(i=k+;i<equ;i++)
{
if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
}
if(max_r!=k)
{// 与第k行交换.
for(j=k;j<var+;j++) swap(a[k][j],a[max_r][j]);
}
if(a[k][col]==)
{// 说明该col列第k行以下全是0了,则处理当前行的下一列.
k--;
continue;
}
for(i=k+;i<equ;i++)
{// 枚举要删去的行.
if(a[i][col]!=)
{
LCM = lcm(abs(a[i][col]),abs(a[k][col]));
ta = LCM/abs(a[i][col]);
tb = LCM/abs(a[k][col]);
if(a[i][col]*a[k][col]<)tb=-tb;//异号的情况是相加
for(j=col;j<var+;j++)
{
a[i][j] = ((a[i][j]*ta-a[k][j]*tb)%+)%;
}
}
}
} // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
for (i = k; i < equ; i++)
{ // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
if ( a[i][col] != ) return -;
} if (k < var)
{
return var - k; // 自由变元有var - k个.
}
// 3. 唯一解的情况
// 计算出Xn-1, Xn-2 ... X0.
for (i = var - ; i >= ; i--)
{
temp = a[i][var];
for (j = i + ; j < var; j++)
{
if (a[i][j] != ) temp -= a[i][j] * x[j];
temp=(temp%+)%;
}
while (temp % a[i][i] != ) temp+=;
x[i] =( temp / a[i][i])% ;
}
return ;
} int sts(char *s)
{
if(strcmp(s, "MON") == ) return ;
else if(strcmp(s, "TUE") == ) return ;
else if(strcmp(s, "WED") == ) return ;
else if(strcmp(s, "THU") == ) return ;
else if(strcmp(s, "FRI") == ) return ;
else if(strcmp(s, "SAT") == ) return ;
else if(strcmp(s, "SUN") == ) return ;
} int main()
{
int N, M, xx, t;
char str1[], str2[];
while(~scanf("%d%d", &N, &M) && (N+M)){
memset(a, , sizeof(a));
for(int i = ; i < M; i++){
scanf("%d%s%s", &xx, str1, str2);
a[i][N] = ((sts(str2)-sts(str1)+)%+)%; for(int j = ; j < xx; j++){
scanf("%d", &t);
t--;
a[i][t]++;
a[i][t] = a[i][t]%;
}
}
int ans = Gauss(M, N);
if(ans == -) puts("Inconsistent data.");
else if(ans == ){
for(int i = ; i < N-; i++){
if(x[i] <= ) printf("%d ", x[i]+);
else printf("%d ", x[i]);
}
if(x[N-] <= ) printf("%d\n", x[N-]+);
else printf("%d\n", x[N-]);
}
else{
puts("Multiple solutions.");
}
}
return ;
}
POJ Widget Factory 【求解模线性方程】的更多相关文章
- POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...
- POJ2115——C Looooops(扩展欧几里德+求解模线性方程)
C Looooops DescriptionA Compiler Mystery: We are given a C-language style for loop of type for (vari ...
- POJ 2115 简单的模线性方程求解
简单的扩展欧几里得题 这里 2^k 不能自作聪明的用 1<<k来写 , k >= 31时就爆int了 , 即使定义为long long 也不能直接这样写 后来老老实实 for(int ...
- poj_2115C Looooops(模线性方程)
题目链接:http://poj.org/problem?id=2115 C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- 模线性方程&&中国剩余定理及拓展
一.求解模线性方程 由ax=b(mod n) 可知ax = ny + b 就相当于ax + ny = b 由扩展欧几里得算法可知有解条件为gcd(a, n)整除d 可以直接套用扩展欧几里得算法 最终由 ...
- POJ 2142 TheBalance 模线性方程求解
题目大意: 就是将两种砝码左右摆放,能够在物品放置在天平上时保持平衡 很容易得到 ax + by = t的模线性方程 按题目要求,希望首先满足 |x| + |y| 最小 , 如果有多种情况,再满足所有 ...
- poj 2947 Widget Factory
Widget Factory 题意:有n件装饰品,有m组信息.(1 <= n ,m<= 300)每组信息有开始的星期和结束的星期(是在mod 7范围内的)并且还包括num种装饰品的种类(1 ...
- POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)
题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...
- POJ 2115 C Looooops(模线性方程)
http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思 ...
随机推荐
- (转)Nginx 反向代理、负载均衡、页面缓存、URL重写及读写分离详解
原文:http://blog.51cto.com/freeloda/1288553 大纲 一.前言 二.环境准备 三.安装与配置Nginx 四.Nginx之反向代理 五.Nginx之负载均衡 六.Ng ...
- fiter 编码
package com.itheima.web.filter; import java.io.IOException; import javax.servlet.Filter; import java ...
- TOJ 3635 过山车
Description RPG girls今天和大家一起去游乐场玩,终于可以坐上梦寐以求的过山车了.可是,过山车的每一排只有两个座位,而且还有条不成文的规矩,就是每个女生必须找 个个男生做partne ...
- PHP邮件发送
php带有内置的mail() 发送邮件函数,但是较为繁琐:建议上网下载一个PHPMailer:
- C++ 编译器
C++编译器 当我们定义了一个类的时候, C++编译器在默认的情况下会为我们添加默认的构造方法, 拷贝构造方法, 析构函数和=运算符 在第一次创建对象的语句中如: MyString myString ...
- Jersey统一异常处理
众所周知,java服务提供者提供给服务请求者应该是特定格式的数据,而不能出现异常栈类似信息,那么jersey中,如何添加统一的异常处理呢? 针对jersey启动如果是实现了ResourceConfig ...
- Oracle 数据类型详解
数据类型(datatype)是列(column)或存储过程中的一个属性. Oracle支持的数据类型可以分为三个基本种类:字符数据类型.数字数据类型以及表示其它数据的数据类型. 字符数据类型 CHAR ...
- 解决npm install安装慢的问题
国外镜像会很慢 可用 get命令查看registry npm congfig get registry 原版结果为 http://registry.npmjs.org 用set命令换成阿里的镜像就可以 ...
- javaEE环境搭建-eclipse
1. javaEE环境搭建: (1) JDK1.8 (2) eclipse-JavaEE (3) tomcat-7.0.90 下载地址: https://tomca ...
- js获取客户端用户IP
<script src="http://pv.sohu.com/cityjson?ie=utf-8"></script> <script type=& ...