118-不同的子序列

给出字符串S和字符串T,计算S的不同的子序列中T出现的个数。

子序列字符串是原始字符串通过删除一些(或零个)产生的一个新的字符串,并且对剩下的字符的相对位置没有影响。(比如,“ACE”是“ABCDE”的子序列字符串,而“AEC”不是)。

样例

给出S = "rabbbit", T = "rabbit"

返回 3

挑战

Do it in O(n2) time and O(n) memory.

O(n2) memory is also acceptable if you do not know how to optimize memory.

标签

字符串处理 动态规划

思路

使用动态规划,首先考虑辅助空间为 O(n^2) 的情况,使用二维数组 dp[i][j] 表示 S[0...i] 中 T[0...j] 出现的个数

动态转移方程为:

dp[i][j] = dp[i-1][j-1] + dp[i-1][j] (S[i]==T[j])

dp[i][j] = dp[i-1][j] (S[i]!=T[j])

过程如下:



过程中发现,新的取值仅仅和其左上和上部元素有关,所以可以用一维数组 dp[i] 代替二维数组

code

class Solution {
public:
/**
* @param S, T: Two string.
* @return: Count the number of distinct subsequences
*/
int numDistinct(string &S, string &T) {
// write your code here
int sizeS = S.size(), sizeT = T.size(), i = 0, j = 0;
if(sizeS <= 0 || sizeT <= 0) {
return 1;
} vector<int> dp(sizeT+1, 0);
dp[0] = 1; for(i=1; i<=sizeS; i++) {
for(j=sizeT; j>0; j--) {
if(S[i-1] == T[j-1]) {
dp[j] += dp[j-1];
}
}
}
return dp[sizeT];
}
};

lintcode-118-不同的子序列的更多相关文章

  1. lintcode:最长公共子序列

    题目 最长公共子序列 给出两个字符串,找到最长公共子序列(LCS),返回LCS的长度. 样例 给出"ABCD" 和 "EDCA",这个LCS是 "A& ...

  2. lintcode:最长上升子序列

    题目 最长上升子序列 给定一个整数序列,找到最长上升子序列(LIS),返回LIS的长度. 样例 给出[5,4,1,2,3],这个LIS是[1,2,3],返回 3 给出[4,2,4,5,3,7],这个L ...

  3. lintcode 最长上升连续子序列 II(二维最长上升连续序列)

    题目链接:http://www.lintcode.com/zh-cn/problem/longest-increasing-continuous-subsequence-ii/ 最长上升连续子序列 I ...

  4. C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

    版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...

  5. LintCode 77: 最长公共子序列

    public class Solution { /** * @param A, B: Two string. * @return: the length of the longest common s ...

  6. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  7. [LintCode] Longest Increasing Continuous Subsequence 最长连续递增子序列

    Give an integer array,find the longest increasing continuous subsequence in this array. An increasin ...

  8. lintcode 中等题 :Maximum Product Subarray 最大连续乘积子序列

    题目 乘积最大子序列 找出一个序列中乘积最大的连续子序列(至少包含一个数). 样例 比如, 序列 [2,3,-2,4] 中乘积最大的子序列为 [2,3] ,其乘积为6. 解题  法一:直接暴力求解 时 ...

  9. lintcode :最长上升连续子序列

    题目: 最长上升连续子序列 给定一个整数数组(下标从 0 到 n-1, n 表示整个数组的规模),请找出该数组中的最长上升连续子序列.(最长上升连续子序列可以定义为从右到左或从左到右的序列.) 样例 ...

  10. lintcode 77.Longest Common Subsequence(最长公共子序列)、79. Longest Common Substring(最长公共子串)

    Longest Common Subsequence最长公共子序列: 每个dp位置表示的是第i.j个字母的最长公共子序列 class Solution { public: int findLength ...

随机推荐

  1. Struts2前期(这框架目前正处于淘汰状态)

    Struts2第一天 Struts2的学习路线 1. Struts2的入门:主要是学习Struts2的开发流程(Struts2的开发流程.常见的配置.Action类的编写) 2. Struts2的Se ...

  2. IE浏览器关于ajax的缓存机制

    IE浏览器对于同一个URL只返回相同结果.因为,在默认情况下,IE会缓存ajax的请求结果.对于同一个URL地址,在缓存过期之前,只有第一次请求会真正发送到服务端.大多数情况下,我们使用ajax是希望 ...

  3. CF1042A 【Benches】(优先队列)

    这是一道良心的cf题 题意里让你求的是来了m个人后人数最多的长椅上最少和最多有多少人 如果要求最多,很好办,m个人都挤到原来人数最多的长椅上了(一眼看出) 但如果要求最少呢? 大家看图 长椅某个时间的 ...

  4. [洛谷]P3704-数字表格

    [洛谷]P3704-数字表格 妙啊,这又是一道反演题,而且个人感觉比较高级 传送门 大意 在\(N\times M\)的数表\(a\)中,\(a_{i,j}\)表示f((i,j)),其中\((i,j) ...

  5. 【前行&赛时总结】◇第4站&赛时9◇ CF Round 513 Div1+Div2

    ◇第4站&赛时9◇ CF Round 513 Div1+Div2 第一次在CF里涨Rating QWQ 深感不易……作blog以记之 ( ̄▽ ̄)" +Codeforces 的门为你打 ...

  6. 【控制连接实现信息共享---linux和设备下ssh和远程连接telnet服务的简单搭建】

    SSH的配置 空密码登陆ssh server 如果要登录ssh server通常要在server和client之间采取具有共同加密的秘钥,若每次当client想要了:连接ssh server时都要手工 ...

  7. 浅谈React虚拟DOM

    为什么要使用虚拟DOM 因为浏览器的DOM渲染是非常消耗性能的,很低效,我们使用虚拟DOM是为了提高DOM的渲染性能: 什么是虚拟DOM 虚拟DOM就是把真实的DOM树通过createElement转 ...

  8. webpack和sass功能简介

    1.webpack webpack 是一个打包工具,为什么需要打包?因为有的人的脚本开发语言可能是 CoffeeScript 或者是 TypeScript,样式开发工具可能是 Less 或者 Sass ...

  9. Python学习 :文件操作

    文件基本操作流程: 一. 创建文件对象 二. 调用文件方法进行操作 三. 关闭文件(注意:只有在关闭文件后,才会写入数据) fh = open('李白诗句','w',encoding='utf-8') ...

  10. ruby 类库组成

    一. 核心类库: 二.标准类库: 文本 base64.rb 处理Base64编码的模块     csv.rb CSV(Comma Separated Values)库 ruby 1.8 特性     ...