Weka:call for the EM algorithm to achieve clustering.(EM算法)
EM算法:
在Eclipse中写出读取文件的代码然后调用EM算法计算输出结果:
package EMAlg;
import java.io.*; import weka.core.*;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;
import weka.clusterers.*;
public class EMAlg { public EMAlg() {
// TODO Auto-generated constructor stub
System.out.println("this is the EMAlg");
} public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
String file="C:\\Program Files/DataMining/Weka-3-6-10/data/labor.arff";
FileReader FReader=new FileReader(file);
BufferedReader Reader= new BufferedReader(FReader); Instances data=new Instances(Reader);
data.setClassIndex(data.numAttributes()-1);//设置最后一个属性作为分类属性 Remove filter=new Remove();
System.out.println("''+data.classIndex()的输出内容是:"+""+data.classIndex());
System.out.println("读取数据的属性个数一共有:"+data.numAttributes()+"个.");
filter.setAttributeIndices(""+(data.classIndex()+1));
/*filter.setAttributeIndices();
* Set which attributes are to be deleted (or kept if invert is true)
* 用来设置哪一个属性应该被删除的方法。
* Parameters:
* rangeList - a string representing the list of attributes. Since the string will typically come from a user, attributes are indexed from 1.
* eg: first-3,5,6-last
*/
filter.setInputFormat(data);
/*
* public boolean setInputFormat(Instances instanceInfo)throws java.lang.Exception
* Sets the format of the input instances(设置输入数据的格式). If the filter is able to determine the output format before seeing any input instances, it does so here(如果过滤器在查看任何输入文件之前可以决定 输入文件的格式,那么这个函数就放在这里).
* This default implementation clears the output format and output queue, and the new batch flag is set.
* Overriders should call super.setInputFormat(Instances)
* Parameters:
* instanceInfo - an Instances object containing the input instance structure (any instances contained in the object are ignored - only the structure is required).
* Returns:
* true if the outputFormat may be collected immediately
* Throws:
* java.lang.Exception - if the inputFormat can't be set successfully
*/
Instances dataCluster=Filter.useFilter(data, filter);
/*public static Instances useFilter(Instances data,Filter filter)throws java.lang.Exception
* Filters an entire set of instances through a filter and returns the new set.
* 传入两个参数,第一个是需要进行过滤的数据,第二个是使用的过滤器,返回只为新的数据集。
* Parameters:
* data - the data to be filtered
* filter - the filter to be used
* Returns:
* the filtered set of data
* Throws:
* java.lang.Exception - if the filter can't be used successfully
*/
EM clusterer=new EM();
/*
* public class EM
* extends RandomizableDensityBasedClusterer
* implements NumberOfClustersRequestable, WeightedInstancesHandler
* Simple EM (expectation maximisation) class.
* EM assigns a probability distribution to each instance which indicates the probability of it belonging to each of the clusters. EM can decide how many clusters to create by cross validation, or you may specify apriori how many clusters to generate.
* The cross validation performed to determine the number of clusters is done in the following steps:
* 1. the number of clusters is set to 1
* 2. the training set is split randomly into 10 folds.
* 3. EM is performed 10 times using the 10 folds the usual CV way.
* 4. the loglikelihood is averaged over all 10 results.
* 5. if loglikelihood has increased the number of clusters is increased by 1 and the program continues at step 2.
* The number of folds is fixed to 10, as long as the number of instances in the training set is not smaller 10. If this is the case the number of folds is set equal to the number of instances.
* Valid options are:
* -N <num>
* number of clusters. If omitted or -1 specified, then cross validation is used to select the number of clusters.
* -I <num>
* max iterations.(default 100)
* -V
* verbose.
* -M <num>
* minimum allowable standard deviation for normal density computation
* (default 1e-6)
* -O
* Display model in old format (good when there are many clusters)
* -S <num>
* Random number seed.(default 100)
*/ String [] options=new String[4]; // max. iterations //最大迭代次数
options[0] = "-I";
options[1] = "100";
//set cluster numbers,设置簇的个数
options[2]="-N";
options[3]="2"; clusterer.setOptions(options);
clusterer.buildClusterer(dataCluster);
//clusterer.buildClusterer(dataClusterer); // evaluate clusterer
ClusterEvaluation eval = new ClusterEvaluation();
eval.setClusterer(clusterer);
eval.evaluateClusterer(data); // print results
System.out.println("数据总数:"+data.numInstances()+"属性个数为:"+data.numAttributes());
System.out.println(eval.clusterResultsToString());
}
}
使用的数据是Weka安装目录下data文件夹中的labor.arff文件。
输出的结果是:
''+data.classIndex()的输出内容是:16
读取数据的属性个数一共有:17个.
数据总数:57属性个数为:17 EM
== Number of clusters: 2 Cluster
Attribute 0 1
(0.14) (0.86)
=================================================
duration
mean 1.5702 2.2532
std. dev. 0.4953 0.6764 wage-increase-first-year
mean 3.0708 3.9184
std. dev. 1.0028 1.3571 wage-increase-second-year
mean 3.8141 3.9964
std. dev. 0.8153 1.0624 wage-increase-third-year
mean 3.9133 3.9133
std. dev. 0.6522 0.6952 cost-of-living-adjustment
none 7.0614 36.9386
tcf 1.3707 8.6293
tc 2.2872 6.7128
[total] 10.7192 52.2808
working-hours
mean 39.4412 37.8196
std. dev. 0.8911 2.4268 pension
none 6.4515 6.5485
ret_allw 2.3211 3.6789
empl_contr 1.9466 42.0534
[total] 10.7192 52.2808
standby-pay
mean 6.7945 7.5462
std. dev. 1.4912 1.918 shift-differential
mean 3.4074 5.1002
std. dev. 1.6629 3.4277 education-allowance
yes 3.167 8.833
no 6.5522 42.4478
[total] 9.7192 51.2808
statutory-holidays
mean 10.555 11.1788
std. dev. 0.572 1.2533 vacation
below_average 4.657 21.343
average 4.0313 14.9687
generous 2.0309 15.9691
[total] 10.7192 52.2808
longterm-disability-assistance
yes 2.9977 48.0023
no 6.7215 3.2785
[total] 9.7192 51.2808
contribution-to-dental-plan
none 7.1218 3.8782
half 2.5419 34.4581
full 1.0556 13.9444
[total] 10.7192 52.2808
bereavement-assistance
yes 5.7192 50.2808
no 4 1
[total] 9.7192 51.2808
contribution-to-health-plan
none 6.2887 3.7113
half 1.8752 9.1248
full 2.5554 39.4446
[total] 10.7192 52.2808
Clustered Instances 0 8 ( 14%)
1 49 ( 86%) Log likelihood: -18.37167 Class attribute: class
Classes to Clusters: 0 1 <-- assigned to cluster
8 12 | bad
0 37 | good Cluster 0 <-- bad
Cluster 1 <-- good Incorrectly clustered instances : 12.0 21.0526 %
Weka:call for the EM algorithm to achieve clustering.(EM算法)的更多相关文章
- Andrew Ng机器学习公开课笔记 -- Mixtures of Gaussians and the EM algorithm
网易公开课,第12,13课 notes,7a, 7b,8 从这章开始,介绍无监督的算法 对于无监督,当然首先想到k means, 最典型也最简单,有需要直接看7a的讲义 Mixtures of G ...
- EM算法 The EM Algorithm
(EM算法)The EM Algorithm http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html EM算法原理 http: ...
- Machine Learning—Mixtures of Gaussians and the EM algorithm
印象笔记同步分享:Machine Learning-Mixtures of Gaussians and the EM algorithm
- Gaussian Mixture Models and the EM algorithm汇总
Gaussian Mixture Models and the EM algorithm汇总 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 漫谈 ...
- Maximum likelihood from incomplete data via the EM algorithm (1977)
Maximum likelihood from incomplete data via the EM algorithm (1977)
- (EM算法)The EM Algorithm
http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html http://blog.sina.com.cn/s/blog_a7da ...
- The EM Algorithm
EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用到了.在Mitchell的书中也提到EM可以用于贝叶 ...
- Mixtures of Gaussians and the EM algorithm
http://cs229.stanford.edu/ http://cs229.stanford.edu/notes/cs229-notes7b.pdf
- 挑子学习笔记:两步聚类算法(TwoStep Cluster Algorithm)——改进的BIRCH算法
转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的 ...
随机推荐
- Ubuntu16.04更换下载源
更新源的方法 进入/etc/apt/ cd /etc/apt 对 sources.list文件进行备份: sudo cp sources.list sources.list.bak 打开源列表文件 s ...
- oracle三种连接身份
登录oracle数据库有三种连接身份 sysdba:数据库管理员,sysyoper:数据库操作员,normal:普通用户. "sysdba" 即数据库管理员 权限包括: 打 ...
- Largest Submatrix of All 1’s(思维+单调栈)
Given a m-by-n (0,1)-matrix, of all its submatrices of all 1's which is the largest? By largest we m ...
- 1091 N-自守数 (15 分)
如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”.例如 3×922=25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守 ...
- 有用的 Angular CLI 命令参数
这是一些有用的 Angular 5 CLI 命令参数,注意参数前面的-和--的不同... 1. 指定build的输出为production version,合并优化css and js files. ...
- [转] NOI, NOIP, IOI, ACM
[From] http://blog.csdn.net/chenbean/article/details/38928243 NOI是教育部和中国科协委托中国计算机学会举办了全国青少年计算机程序设计竞赛 ...
- 给新人看的 JavaScript的继承
//这个继承方式是给新人看的,逻辑简单一些 Object.extend=function(props){ //继承父类 var prototype=Object.create(this.prototy ...
- n皇后问题--DFS输出棋盘
N皇后问题 Problem Description 在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上.你的任务是,对 ...
- Android四层架构
Andrid系统的体系结构设计为多层结构,这种结构在给用户提供安全保护的同时还保持了开放平台的灵活性.如下图所示: Google官方提供的Android系统的四层架构图 从上到下进行简单介绍: 一 ...
- 2019.03.26 读书笔记 关于for与foreach
for 是索引器,foreach是迭代器 foreach在movenext()中增加了对集合版本(一个整数,每次对集合修改都+1)的验证,另外反编译后的效果是使用了using(是try finally ...