我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:

x≡a1(mod m1)

x≡a2(mod m2)



x≡ak(mod mk)

在0<=<m1m2…mk内有唯一解。

记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:

ei≡0(mod mj),j!=i

ei≡1(mod mj),j=i

很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。

这就是中国剩余定理及其求解过程。

现在有一个问题是这样的:

一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。

Input输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0 并且a=0结束输入,不处理。

Output对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。

Sample Input

2 1
2 3
0 0

Sample Output

5
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#define N 1000010
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
ll lcm(ll a,ll b)
{
return a/gcd(a,b)*b;
}
int main()
{
ll n,y,m;
while(~scanf("%lld%lld",&n,&y),n&&y)
{
ll ans=1;
for(int i=0;i<n;i++)
{
scanf("%lld",&m);
ans=lcm(m,ans);
}
cout<<ans-y<<endl;
} }

  

hdu_1788_Chinese remainder theorem again (lcm的更多相关文章

  1. hdu 1788 Chinese remainder theorem again(最小公倍数)

    Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...

  2. Chinese remainder theorem again(中国剩余定理)

    C - Chinese remainder theorem again Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:% ...

  3. DHU 1788 Chinese remainder theorem again 中国剩余定理

    Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  4. (多项式)因式分解定理(Factor theorem)与多项式剩余定理(Polynomial remainder theorem)(多项式长除法)

    (多项式的)因式分解定理(factor theorem)是多项式剩余定理的特殊情况,也就是余项为 0 的情形. 0. 多项式长除法(Polynomial long division) Polynomi ...

  5. 【数论】【中国剩余定理】【LCM】hdu1788 Chinese remainder theorem again

    根据题目容易得到N%Mi=Mi-a. 那么可得N%Mi+a=Mi. 两侧同时对Mi取余,可得(N+a)%Mi=0. 将N+a看成一个变量,就可以把原问题转化成求Mi的LCM,最后减去a即可. #inc ...

  6. HDU 1788 Chinese remainder theorem again 中国剩余定理

    题意: 给定n,AA 以下n个数m1,m2···mn 则有n条方程 res % m1 = m1-AA res % m2 = m2-AA 问res的最小值 直接上剩余定理,嘿嘿 #include< ...

  7. 中国剩余定理(Chinese Remainder Theorem)

    我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \tim ...

  8. HDU 1788 Chinese remainder theorem again

    题目链接 题意 : 中文题不详述. 思路 : 由N%Mi=(Mi-a)可得(N+a)%Mi=0;要取最小的N即找Mi的最小公倍数即可. #include <cstdio> #include ...

  9. HDU——1788 Chinese remainder theorem again

    再来一发水体,是为了照应上一发水题. 再次也特别说明一下,白书上的中国剩余定理的模板不靠谱. 老子刚刚用柏树上的模板交上去,简直wa出翔啊. 下面隆重推荐安叔版同余方程组的求解方法. 反正这个版本十分 ...

随机推荐

  1. python中的字符串 列表 字典

    字符串     一个有序的字符集合  不可变 1,可以使用for in语句进行迭代循环,返回元素    2,in类是于str.find()方法但是是返回布尔结果        str.find()返回 ...

  2. Python爬虫之三种数据解析方式

    一.引入 二.回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需 ...

  3. 微信小程序问题总结

    1.navigator不能跳转到tabBar所包含的页面 例如: tabbar包含center页面,不包含page1页面,使用如下跳转: <navigator url='../center/ce ...

  4. chosen下拉框插件的使用

    效果如下 第一步: 第二步: 根据HTML5规范, 通常在引入CSS和JS时不需要指明 type,因为 text/css 和 text/javascript 分别是他们的默认值. <link r ...

  5. php基础--取默认值以及类的继承

    (1)对于php的默认值的使用和C++有点类似,都是在函数的输入中填写默认值,以下是php方法中对于默认值的应用: <?phpfunction makecoffee($types = array ...

  6. App Inventor 网络资源及推荐书目

    Ai2服务器 官方服务器:http://ai2.appinventor.edu/ 官方备用服务器:(大陆可用):http://contest.appinventor.mit.edu/ 国内个人服务器: ...

  7. python课程笔记

    python变量原理:以数值为主,数字存储在内存中,分配给不同的变量.与C刚好相反 Python中,有3种内建的数据结构:列表.元组和字典.1.列表     list是处理一组有序项目的数据结构,即你 ...

  8. [EffectiveC++]item30:Understand the ins and outs of inlining

  9. 在已有软件加壳保护 下实现 Inline hook

    如写的不好请见谅,本人水平有限. 个人简历及水平:. http://www.cnblogs.com/hackdragon/p/3662599.html 正常情况: 接到一个项目实现对屏幕输出内容的获取 ...

  10. linux下vi的一些简单的操作

    前言 在嵌入式linux开发中,进行需要修改一下配置文件之类的,必须使用vi,因此,熟悉 vi 的一些基本操作,有助于提高工作效率. 一,模式 vi编辑器有3种模式:命令模式.输入模式.末行模式.掌握 ...