hdu_1788_Chinese remainder theorem again (lcm
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)
…
x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。
Input输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0 并且a=0结束输入,不处理。
Output对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。
Sample Input
2 1
2 3
0 0
Sample Output
5
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#define N 1000010
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
ll lcm(ll a,ll b)
{
return a/gcd(a,b)*b;
}
int main()
{
ll n,y,m;
while(~scanf("%lld%lld",&n,&y),n&&y)
{
ll ans=1;
for(int i=0;i<n;i++)
{
scanf("%lld",&m);
ans=lcm(m,ans);
}
cout<<ans-y<<endl;
} }
hdu_1788_Chinese remainder theorem again (lcm的更多相关文章
- hdu 1788 Chinese remainder theorem again(最小公倍数)
Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...
- Chinese remainder theorem again(中国剩余定理)
C - Chinese remainder theorem again Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:% ...
- DHU 1788 Chinese remainder theorem again 中国剩余定理
Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 ...
- (多项式)因式分解定理(Factor theorem)与多项式剩余定理(Polynomial remainder theorem)(多项式长除法)
(多项式的)因式分解定理(factor theorem)是多项式剩余定理的特殊情况,也就是余项为 0 的情形. 0. 多项式长除法(Polynomial long division) Polynomi ...
- 【数论】【中国剩余定理】【LCM】hdu1788 Chinese remainder theorem again
根据题目容易得到N%Mi=Mi-a. 那么可得N%Mi+a=Mi. 两侧同时对Mi取余,可得(N+a)%Mi=0. 将N+a看成一个变量,就可以把原问题转化成求Mi的LCM,最后减去a即可. #inc ...
- HDU 1788 Chinese remainder theorem again 中国剩余定理
题意: 给定n,AA 以下n个数m1,m2···mn 则有n条方程 res % m1 = m1-AA res % m2 = m2-AA 问res的最小值 直接上剩余定理,嘿嘿 #include< ...
- 中国剩余定理(Chinese Remainder Theorem)
我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times \cdots \tim ...
- HDU 1788 Chinese remainder theorem again
题目链接 题意 : 中文题不详述. 思路 : 由N%Mi=(Mi-a)可得(N+a)%Mi=0;要取最小的N即找Mi的最小公倍数即可. #include <cstdio> #include ...
- HDU——1788 Chinese remainder theorem again
再来一发水体,是为了照应上一发水题. 再次也特别说明一下,白书上的中国剩余定理的模板不靠谱. 老子刚刚用柏树上的模板交上去,简直wa出翔啊. 下面隆重推荐安叔版同余方程组的求解方法. 反正这个版本十分 ...
随机推荐
- Csharp: Detect Mobile Browsers
/// <summary> /// 檢測手機客戶端 HttpCapabilitiesBase.IsMobileDevice /// .NET 4.5 /// 塗聚文注 /// </s ...
- linux 安装和卸载软件
安装: apt-get install cups-pdf 卸载:apt -get remove cups
- input type=number去掉上下箭头
<input type="number" ...> <style> input::-webkit-outer-spin-button, input::-we ...
- Python——追加学习笔记(二)
文件处理 # 文件内移动 seek()方法可以在文件中移动文件指针到不同的位置,offset字节代表相对于某个位置偏移量,默认为0,代表从文件开头算起,1代表从当前位置算起,2代表从文件末尾算起. s ...
- 增加C盘空间大小
随着我们使用电脑的时间越来越久,电脑C盘的空间会出现不够用的情况,这时我们需要的就是增加C盘的大小,基本上有两种方式 1.通过系统自带的磁盘管理(有可能没法操作,主要介绍第二种) 2.通过分区软件进行 ...
- April 2 2017 Week 14 Sunday
You only live once, but if you do it right, once is enough. 人生只有一次,但如果活对了,一次也就够了. Maybe I am going t ...
- CSS基础语法(一) CSS的3种引入
CSS样式表 CSS可算是网页设计的一个突破,它解决了网页界面排版的难题.可以这么说,HTML的Tag主要是定义网页的内容(Content),而CSS决定这些网页内容如何显示(Layout). Web ...
- 2016 China Collegiate Programming Contest Final
2016 China Collegiate Programming Contest Final Table of Contents 2016 China Collegiate Programming ...
- 创建一个dynamics 365 CRM online plugin (十二) - Asynchronous Plugins
这篇是plugin的终结. 通过之前的11期我们应该发现了plugin其实学习起来不难. async plugin 是把plugin的功能async run起来. e.g. 我们之前做过的preOp ...
- cross entropy与logistic regression
维基上corss entropy的一部分 知乎上也有一个类似问题:https://www.zhihu.com/question/36307214 cross entropy有二分类和多分类的形式,分别 ...