我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:

x≡a1(mod m1)

x≡a2(mod m2)



x≡ak(mod mk)

在0<=<m1m2…mk内有唯一解。

记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:

ei≡0(mod mj),j!=i

ei≡1(mod mj),j=i

很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。

这就是中国剩余定理及其求解过程。

现在有一个问题是这样的:

一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。

Input输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0 并且a=0结束输入,不处理。

Output对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。

Sample Input

2 1
2 3
0 0

Sample Output

5
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#define N 1000010
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
ll lcm(ll a,ll b)
{
return a/gcd(a,b)*b;
}
int main()
{
ll n,y,m;
while(~scanf("%lld%lld",&n,&y),n&&y)
{
ll ans=1;
for(int i=0;i<n;i++)
{
scanf("%lld",&m);
ans=lcm(m,ans);
}
cout<<ans-y<<endl;
} }

  

hdu_1788_Chinese remainder theorem again (lcm的更多相关文章

  1. hdu 1788 Chinese remainder theorem again(最小公倍数)

    Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...

  2. Chinese remainder theorem again(中国剩余定理)

    C - Chinese remainder theorem again Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:% ...

  3. DHU 1788 Chinese remainder theorem again 中国剩余定理

    Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  4. (多项式)因式分解定理(Factor theorem)与多项式剩余定理(Polynomial remainder theorem)(多项式长除法)

    (多项式的)因式分解定理(factor theorem)是多项式剩余定理的特殊情况,也就是余项为 0 的情形. 0. 多项式长除法(Polynomial long division) Polynomi ...

  5. 【数论】【中国剩余定理】【LCM】hdu1788 Chinese remainder theorem again

    根据题目容易得到N%Mi=Mi-a. 那么可得N%Mi+a=Mi. 两侧同时对Mi取余,可得(N+a)%Mi=0. 将N+a看成一个变量,就可以把原问题转化成求Mi的LCM,最后减去a即可. #inc ...

  6. HDU 1788 Chinese remainder theorem again 中国剩余定理

    题意: 给定n,AA 以下n个数m1,m2···mn 则有n条方程 res % m1 = m1-AA res % m2 = m2-AA 问res的最小值 直接上剩余定理,嘿嘿 #include< ...

  7. 中国剩余定理(Chinese Remainder Theorem)

    我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \tim ...

  8. HDU 1788 Chinese remainder theorem again

    题目链接 题意 : 中文题不详述. 思路 : 由N%Mi=(Mi-a)可得(N+a)%Mi=0;要取最小的N即找Mi的最小公倍数即可. #include <cstdio> #include ...

  9. HDU——1788 Chinese remainder theorem again

    再来一发水体,是为了照应上一发水题. 再次也特别说明一下,白书上的中国剩余定理的模板不靠谱. 老子刚刚用柏树上的模板交上去,简直wa出翔啊. 下面隆重推荐安叔版同余方程组的求解方法. 反正这个版本十分 ...

随机推荐

  1. Java进程内缓存

    今天和同事聊到了缓存,在Java中实现进程缓存.这里主要思想是,用一个map做缓存.缓存有个生存时间,过期就删除缓存.这里可以考虑两种删除策略,一种是起一个线程,定期删除过期的key.第二个是,剔除模 ...

  2. CSS设计模式之三权分立模式篇 ( 转)

    转自 海玉的博客 市面上我们常常会看到各种各样的设计模式书籍,Java设计模式.C#设计模式.Ruby设计模式等等.在众多的语言设计模式中我唯独找不到关于CSS设计模式的资料,即使在网上找到类似内容, ...

  3. LARAVEL学习--安装

    之前一直使用Codeignitor框架进行PHP的开发,Codeignitor是一个非常优秀的框架,上手简单,文档极其友好,流行程度甚高(这带来了很好的社区支持+云环境支持),很轻量,可扩展性佳,性能 ...

  4. json中定义数组

    我们经常会看到在js中定义普通函数: function f1(a,b){ console.log(a+b); } f1(); 今天我们看一下如何在json里边定义函数并调用: var json = { ...

  5. Consul 配置ACLs

    比如consul.exe 在D:\consul来个json配置文件在 D:\consul\config.jsonjson 格式{ "acl_datacenter": "d ...

  6. Quartus II管脚批量分配文件(.tcl)格式

    package require ::quartus::project set_location_assignment PIN_E1 -to clk set_location_assignment PI ...

  7. strtoul (将字符串转换成无符号长整型数)

    strtoul strtoul (将字符串转换成无符号长整型数) 相关函数 atof,atoi,atol,strtod,strtol 表头文件 #include<stdlib.h> 定义函 ...

  8. jQuery插件编写步骤详解

    如今做web开发,jquery 几乎是必不可少的,就连vs神器在2010版本开始将Jquery 及ui 内置web项目里了.至于使用jquery好处这里就不再赘述了,用过的都知道.今天我们来讨论下jq ...

  9. C++中临时对象的产生与优化

    看到了几篇讲的不错的博客,这里收集起来 不明白的地方互相参考 https://blog.csdn.net/fangqingan_java/article/details/9320769 https:/ ...

  10. 从今天開始学习iOS开发(iOS 7版)--实现一款App之Foundation框架的使用

    iOSFoundation框架 当你着手为你的应用编写代码的时候,你会发现有很多可供使用的Objective-C的框架类,当中尤其重要的就是基础框架类.它为平台全部的应用提供基础服务.基础框架类中包括 ...