hdu_1788_Chinese remainder theorem again (lcm
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)
…
x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。
Input输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0 并且a=0结束输入,不处理。
Output对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。
Sample Input
2 1
2 3
0 0
Sample Output
5
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#define N 1000010
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
ll lcm(ll a,ll b)
{
return a/gcd(a,b)*b;
}
int main()
{
ll n,y,m;
while(~scanf("%lld%lld",&n,&y),n&&y)
{
ll ans=1;
for(int i=0;i<n;i++)
{
scanf("%lld",&m);
ans=lcm(m,ans);
}
cout<<ans-y<<endl;
} }
hdu_1788_Chinese remainder theorem again (lcm的更多相关文章
- hdu 1788 Chinese remainder theorem again(最小公倍数)
Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...
- Chinese remainder theorem again(中国剩余定理)
C - Chinese remainder theorem again Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:% ...
- DHU 1788 Chinese remainder theorem again 中国剩余定理
Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 ...
- (多项式)因式分解定理(Factor theorem)与多项式剩余定理(Polynomial remainder theorem)(多项式长除法)
(多项式的)因式分解定理(factor theorem)是多项式剩余定理的特殊情况,也就是余项为 0 的情形. 0. 多项式长除法(Polynomial long division) Polynomi ...
- 【数论】【中国剩余定理】【LCM】hdu1788 Chinese remainder theorem again
根据题目容易得到N%Mi=Mi-a. 那么可得N%Mi+a=Mi. 两侧同时对Mi取余,可得(N+a)%Mi=0. 将N+a看成一个变量,就可以把原问题转化成求Mi的LCM,最后减去a即可. #inc ...
- HDU 1788 Chinese remainder theorem again 中国剩余定理
题意: 给定n,AA 以下n个数m1,m2···mn 则有n条方程 res % m1 = m1-AA res % m2 = m2-AA 问res的最小值 直接上剩余定理,嘿嘿 #include< ...
- 中国剩余定理(Chinese Remainder Theorem)
我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times \cdots \tim ...
- HDU 1788 Chinese remainder theorem again
题目链接 题意 : 中文题不详述. 思路 : 由N%Mi=(Mi-a)可得(N+a)%Mi=0;要取最小的N即找Mi的最小公倍数即可. #include <cstdio> #include ...
- HDU——1788 Chinese remainder theorem again
再来一发水体,是为了照应上一发水题. 再次也特别说明一下,白书上的中国剩余定理的模板不靠谱. 老子刚刚用柏树上的模板交上去,简直wa出翔啊. 下面隆重推荐安叔版同余方程组的求解方法. 反正这个版本十分 ...
随机推荐
- python中的字符串 列表 字典
字符串 一个有序的字符集合 不可变 1,可以使用for in语句进行迭代循环,返回元素 2,in类是于str.find()方法但是是返回布尔结果 str.find()返回 ...
- Python爬虫之三种数据解析方式
一.引入 二.回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需 ...
- 微信小程序问题总结
1.navigator不能跳转到tabBar所包含的页面 例如: tabbar包含center页面,不包含page1页面,使用如下跳转: <navigator url='../center/ce ...
- chosen下拉框插件的使用
效果如下 第一步: 第二步: 根据HTML5规范, 通常在引入CSS和JS时不需要指明 type,因为 text/css 和 text/javascript 分别是他们的默认值. <link r ...
- php基础--取默认值以及类的继承
(1)对于php的默认值的使用和C++有点类似,都是在函数的输入中填写默认值,以下是php方法中对于默认值的应用: <?phpfunction makecoffee($types = array ...
- App Inventor 网络资源及推荐书目
Ai2服务器 官方服务器:http://ai2.appinventor.edu/ 官方备用服务器:(大陆可用):http://contest.appinventor.mit.edu/ 国内个人服务器: ...
- python课程笔记
python变量原理:以数值为主,数字存储在内存中,分配给不同的变量.与C刚好相反 Python中,有3种内建的数据结构:列表.元组和字典.1.列表 list是处理一组有序项目的数据结构,即你 ...
- [EffectiveC++]item30:Understand the ins and outs of inlining
- 在已有软件加壳保护 下实现 Inline hook
如写的不好请见谅,本人水平有限. 个人简历及水平:. http://www.cnblogs.com/hackdragon/p/3662599.html 正常情况: 接到一个项目实现对屏幕输出内容的获取 ...
- linux下vi的一些简单的操作
前言 在嵌入式linux开发中,进行需要修改一下配置文件之类的,必须使用vi,因此,熟悉 vi 的一些基本操作,有助于提高工作效率. 一,模式 vi编辑器有3种模式:命令模式.输入模式.末行模式.掌握 ...