洛谷 [SDOI2015]约数个数和 解题报告
[SDOI2015]约数个数和
题目描述
设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limitsN_{i=1}\sum\limitsM_{j=1}d(ij)$
输入输出格式
输入格式:
输入文件包含多组测试数据。第一行,一个整数\(T\),表示测试数据的组数。接下来的\(T\)行,每行两个整数\(N,M\)。
输出格式:
\(T\)行,每行一个整数,表示你所求的答案。
说明
\(1 \le N, M \le 50000\)
\(1 \le T \le 50000\)
Solution
引理\(1\):
\]
引理\(2\):
\]
可以通过\(d\)唯一分解后的计算式感性理解一下
剩下的暴力推个式子
\]
\]
暴力更换不太好枚举的一些东西(比如谁整除谁)
\]
\]
调整求和顺序
\]
\]
某一项太不好弄了,通过更改枚举项拿掉
\]
发现求和项也带有下取整,预处理前缀和以后直接整除分块就可以了。
Code:
#include <cstdio>
#define ll long long
const int N=5e4;
int pri[N+10],mu[N+10],ispri[N+10],f[N+10],cnt,T,a,b;
void init()
{
mu[1]=1;
for(int i=2;i<=N;i++)
{
if(!ispri[i])
{
pri[++cnt]=i;
mu[i]=-1;
}
for(int j=1;j<=cnt&&pri[j]*i<=N;j++)
{
ispri[i*pri[j]]=1;
if(i%pri[j]==0) break;
else mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<=N;i++)
{
mu[i]+=mu[i-1];
for(int l=1,r;l<=i;l=r+1)
{
r=i/(i/l);
f[i]+=i/l*(r-l+1);
}
}
}
int min(int x,int y){return x<y?x:y;}
int main()
{
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&a,&b);
ll ans=0;
for(int l=1,r;l<=min(a,b);l=r+1)
{
r=min(a/(a/l),b/(b/l));
ans+=1ll*(mu[r]-mu[l-1])*f[a/l]*f[b/l];
}
printf("%lld\n",ans);
}
return 0;
}
2018.10.20
洛谷 [SDOI2015]约数个数和 解题报告的更多相关文章
- 洛谷_Cx的故事_解题报告_第四题70
1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h> struct node { long x,y,c; ...
- 洛谷 P4714 「数学」约数个数和 解题报告
P4714 「数学」约数个数和 题意(假):每个数向自己的约数连边,给出\(n,k(\le 10^{18})\),询问\(n\)的约数形成的图中以\(n\)为起点长为\(k\)的链有多少条(注意每个点 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- 洛谷1303 A*B Problem 解题报告
洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...
- 洛谷 P2317 [HNOI2005]星际贸易 解题报告
P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...
- 洛谷 P3802 小魔女帕琪 解题报告
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 洛谷 P3084 [USACO13OPEN]照片Photo 解题报告
[USACO13OPEN]照片Photo 题目描述 农夫约翰决定给站在一条线上的\(N(1 \le N \le 200,000)\)头奶牛制作一张全家福照片,\(N\)头奶牛编号\(1\)到\(N\) ...
- 洛谷 P1379 八数码难题 解题报告
P1379 八数码难题 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初 ...
- 洛谷P3327 约数个数和 结论+莫比乌斯反演
原题 就是让你求\(\sum\limits_{i=1}\sum\limits_{j=1}d(ij)\)(其中\(d(x)\)表示\(x\)的因数个数) 首先有引理(然而并没有证明): \(d(ij)= ...
随机推荐
- [转]Nginx伪静态配置和常用Rewrite伪静态规则集锦
Nginx伪静态配置和常用Rewrite伪静态规则集锦 作者: 字体:[增加 减小] 类型:转载 时间:2014-06-10 我要评论 伪静态是一种可以把文件后缀改成任何可能的一种方法,如果我想把ph ...
- 阻塞队列之LinkedBlockingQueue
概述 LinkedBlockingQueue内部由单链表实现,只能从head取元素,从tail添加元素.添加元素和获取元素都有独立的锁,也就是说LinkedBlockingQueue是读写分离的,读写 ...
- Hadoop(11)-MapReduce概述和简单实操
1.MapReduce的定义 2.MapReduce的优缺点 优点 缺点 3.MapReduce的核心思想 4.MapReduce进程 5.常用数据序列化类型 6.MapReduce的编程规范 用户编 ...
- Python的jieba模块简介
现如今,词云技术遍地都是,分词模块除了jieba也有很多,主要介绍一下jieba的基本使用 import jieba import jieba.posseg as psg from os import ...
- Java学习笔记十:Java的数组以及操作数组
Java的数组以及操作数组 一:什么是数组: 数组可以理解为是一个巨大的“盒子”,里面可以按顺序存放多个类型相同的数据,比如可以定义 int 型的数组 scores 存储 4 名学生的成绩 数组中的元 ...
- Linux中程序的编译和链接过程
1.从源码到可执行程序的步骤:预编译.编译.链接.strip 预编译:预编译器执行.譬如C中的宏定义就是由预编译器处理,注释等也是由预编译器处理的. 编译: 编译器来执行.把源码.c .S编程机器码. ...
- Linux编程之Epoll高并发
网络上所有资料都说epoll是高并发.单线程.IO重叠服用的首选架构,比select和poll性能都要好,特别是在有大量不活跃连接的情况下.具体原理就不阐述了,下面说说使用. 具有有三个函数: #in ...
- 8-C++远征之继承篇-学习笔记
C++远征之继承篇 开篇介绍 整个C++远征计划: 起航->离港->封装->继承 为什么要用继承? 为什么要有继承? 如何来定义基类 <----> 派生类? 基类到派生类 ...
- 基于vue来开发一个仿饿了么的外卖商城(二)
一.抽出头部作为一个组件,在底部导航的时候可以相应的显示不同的标题 技术点:使用slot进行组件间的通信:父组件给子组件传值(子组件里面通过props接收父组件传过来的数据) 查看链接:https:/ ...
- Kotlin 1 函数
#2 函数 函数声明和平时我见到的有点不太一样,使用关键字fun来声明.(感觉好欢乐的样子···O(∩_∩)O~~) 下面的示例,简单的声明了一个函数: // 这是函数声明 fun this_is_a ...