hadoop FileSplit
/** A section of an input file. Returned by {@link
* InputFormat#getSplits(JobContext)} and passed to
* {@link InputFormat#createRecordReader(InputSplit,TaskAttemptContext)}.
*
* 文件的一部分,通过InputFormat#getSplits(JobContext)生成
* 作为参数生产RecordReader:InputFormat#createRecordReader(InputSplit,TaskAttemptContext)
* 实现了InputSplit接口
*/
@InterfaceAudience.Public
@InterfaceStability.Stable
public class FileSplit extends InputSplit implements Writable {
private Path file;
private long start;
private long length;
private String[] hosts;
private SplitLocationInfo[] hostInfos; public FileSplit() {} /** Constructs a split with host information
*
* @param file the file name。 文件名称
* @param start the position of the first byte in the file to process。第一个byte的偏移量
* @param length the number of bytes in the file to process。 split的长度
* @param hosts the list of hosts containing the block, possibly null。 split所在的主机列表
*/
public FileSplit(Path file, long start, long length, String[] hosts) {
this.file = file;
this.start = start;
this.length = length;
this.hosts = hosts;
} /** Constructs a split with host and cached-blocks information
*
* @param file the file name。 文件名称
* @param start the position of the first byte in the file to process。第一个byte的偏移量
* @param length the number of bytes in the file to process split的长度
* @param hosts the list of hosts containing the block split所在的主机列表
* @param inMemoryHosts the list of hosts containing the block in memory 在内存中保存block的机器列表
*/
public FileSplit(Path file, long start, long length, String[] hosts,
String[] inMemoryHosts) {
this(file, start, length, hosts);
hostInfos = new SplitLocationInfo[hosts.length];
for (int i = 0; i < hosts.length; i++) {
// because N will be tiny, scanning is probably faster than a HashSet
boolean inMemory = false;
for (String inMemoryHost : inMemoryHosts) {
if (inMemoryHost.equals(hosts[i])) {
inMemory = true;
break;
}
}
hostInfos[i] = new SplitLocationInfo(hosts[i], inMemory);
}
} /** The file containing this split's data. */
public Path getPath() { return file; } /** The position of the first byte in the file to process. */
public long getStart() { return start; } /** The number of bytes in the file to process. */
@Override
public long getLength() { return length; } @Override
public String toString() { return file + ":" + start + "+" + length; } ////////////////////////////////////////////
// Writable methods
//////////////////////////////////////////// @Override
public void write(DataOutput out) throws IOException {
Text.writeString(out, file.toString());
out.writeLong(start);
out.writeLong(length);
} @Override
public void readFields(DataInput in) throws IOException {
file = new Path(Text.readString(in));
start = in.readLong();
length = in.readLong();
hosts = null;
} @Override
public String[] getLocations() throws IOException {
if (this.hosts == null) {
return new String[]{};
} else {
return this.hosts;
}
} @Override
@Evolving
public SplitLocationInfo[] getLocationInfo() throws IOException {
return hostInfos;
}
}
hadoop FileSplit的更多相关文章
- 工作采坑札记:4. Hadoop获取InputSplit文件信息
1. 场景 基于客户的数据处理需求,客户分发诸多小数据文件,文件每行代表一条记录信息,且每个文件以"类型_yyyyMMdd_批次号"命名.由于同一条记录可能存在于多个文件中,且处于 ...
- 报错org.apache.hadoop.mapreduce.lib.input.FileSplit cannot be cast to org.apache.hadoop.mapred.FileSplit
报错 java.lang.Exception: java.lang.ClassCastException: org.apache.hadoop.mapreduce.lib.input.FileSpli ...
- Hadoop之倒排索引
前言: 从IT跨度到DT,如今的数据每天都在海量的增长.面对如此巨大的数据,如何能让搜索引擎更好的工作呢?本文作为Hadoop系列的第二篇,将介绍分布式情况下搜索引擎的基础实现,即“倒排索引”. 1. ...
- hadoop分片分析
上一篇分析了split的生成,现在接着来说具体的split具体内容及其相关的文件和类.以FileSplit(mapred包下org/apache/hadoop/mapreduce/lib/input/ ...
- hadoop输入分片计算(Map Task个数的确定)
作业从JobClient端的submitJobInternal()方法提交作业的同时,调用InputFormat接口的getSplits()方法来创建split.默认是使用InputFormat的子类 ...
- Hadoop的数据输入的源码解析
我们知道,任何一个工程项目,最重要的是三个部分:输入,中间处理,输出.今天我们来深入的了解一下我们熟知的Hadoop系统中,输入是如何输入的? 在hadoop中,输入数据都是通过对应的InputFor ...
- Hadoop日记Day12---MapReduce学习
一.MapReduce简介 1.1MapReduce概述 MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题.MR由两个阶段组成:Map和Reduce ...
- Hadoop日记Day18---MapReduce排序分组
本节所用到的数据下载地址为:http://pan.baidu.com/s/1bnfELmZ MapReduce的排序分组任务与要求 我们知道排序分组是MapReduce中Mapper端的第四步,其中分 ...
- Hadoop官方文档翻译——MapReduce Tutorial
MapReduce Tutorial(个人指导) Purpose(目的) Prerequisites(必备条件) Overview(综述) Inputs and Outputs(输入输出) MapRe ...
随机推荐
- ListView使用--文章集锦
详解ListView加载网络图片的优化,让你轻松掌握! ListView具有多种item布局--实现微信对话列 关注公众号,分享干货,讨论技术
- springmvc4+hibernate4+activiti5.18(Maven)
项目下载地址: http://files.cnblogs.com/files/walk-the-Line/springmvc_activiti5.18_hibernate4.zip
- #error,在xib文件中拷贝按钮所造成的错误.
https://www.evernote.com/shard/s227/sh/3e35a7b3-f40c-46df-8ae0-e7522310c18b/742311974127f12eaafae07a ...
- 【转】针对Android上的ROP攻击剖析
引言 ROP(Return-oriented programming),即“返回导向编程技术”.其核心思想是在整个进程空间内现存的函数中寻找适合指令片断(gadget),并通过精心设计返回 ...
- python基础===pip安装模块失败
此情况只用于网络不畅的安装模块背景: 总出现红色的 Could not find a version that satisfies the requirement pymongo(from versi ...
- 使用maven构建第一个web项目
在eclipse中,正常创建maven项目后,发现在index.jsp中会报错,此时在pom.xml中加入如下依赖关系即可 <dependency> <groupId>java ...
- canvas的基础使用。
目录: 创建canvas. 绘制直线.多边形和七巧板. 绘制弧和圆. (有些图过于宽,被挤压了.可以去相册[canvas用到的图.]看原图.) 创建canvas. HTML5的新标签<canva ...
- Javascript传参参考
可参考的细节: <!doctype html> <html lang="en"> <head> <meta charset="U ...
- 使用ShowDoc在线管理API接口文档
ShowDoc是什么 每当接手一个他人开发好的模块或者项目,看着那些没有写注释的代码,我们都无比抓狂.文档呢?!文档呢?!Show me the doc !! ShowDoc就是一个非常适合IT团队的 ...
- AC日记——Rmq Problem bzoj 3339
3339 思路: 恶心: 代码: #include <cstdio> #include <cstring> #include <iostream> #include ...