Classification and Prediction
# coding: utf-8 # In[128]: get_ipython().magic(u'matplotlib inline')
import pandas as pd
from pandas import Series,DataFrame
import seaborn as sns
sns.set_style('whitegrid')
pd.set_option('display.mpl_style', 'default')
import numpy as np
import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB train_df= pd.read_csv("/home/lpstudy/下载/train.csv")
test_df = pd.read_csv("/home/lpstudy/下载/test.csv") train_df.head() test_df.head() # In[129]: train_df = train_df.drop(["Ticket","PassengerId","Name"],axis = 1)
test_df = test_df.drop(["Name","Ticket"],axis =1) # In[130]: train_df.head() # In[131]: train_df["Embarked"] = train_df["Embarked"].fillna("S")
#plot
sns.factorplot("Embarked","Survived",data = train_df,size = 6,aspect = 2) fig,(axis1,axis2,axis3) = plt.subplots(1,3,figsize = (15,5)) sns.countplot(x='Embarked', data=train_df, ax=axis1)
sns.countplot(x='Survived', hue="Embarked", data=train_df, order=[1,0], ax=axis2) embark_perc = train_df[["Embarked", "Survived"]].groupby(['Embarked'],as_index=False).mean()
sns.barplot(x='Embarked', y='Survived', data=embark_perc,order=['S','C','Q'],ax=axis3) embark_dummies_train = pd.get_dummies(train_df['Embarked'])
embark_dummies_train.drop(['S'], axis=1, inplace=True) embark_dummies_test = pd.get_dummies(test_df['Embarked'])
embark_dummies_test.drop(['S'], axis=1, inplace=True) train_df = train_df.join(embark_dummies_train)
test_df = test_df.join(embark_dummies_test) train_df.drop(['Embarked'], axis=1,inplace=True)
test_df.drop(['Embarked'], axis=1,inplace=True) # In[132]: test_df["Fare"].fillna(test_df["Fare"].median(), inplace=True) train_df['Fare'] = train_df['Fare'].astype(int)
test_df['Fare'] = test_df['Fare'].astype(int) fare_not_survived = train_df["Fare"][train_df["Survived"] == 0]
fare_survived = train_df["Fare"][train_df["Survived"] == 1] avgerage_fare = DataFrame([fare_not_survived.mean(), fare_survived.mean()])
std_fare = DataFrame([fare_not_survived.std(), fare_survived.std()]) #plot
train_df['Fare'].plot(kind='hist', figsize=(15,3),bins=100, xlim=(0,50)) avgerage_fare.index.names = std_fare.index.names = ["Survived"]
avgerage_fare.plot(yerr=std_fare,kind='bar',legend=False) # In[133]: # Age fig, (axis1,axis2) = plt.subplots(1,2,figsize=(15,4))
axis1.set_title('Original Age values - Titanic')
axis2.set_title('New Age values - Titanic') average_age_titanic = train_df["Age"].mean()
std_age_titanic = train_df["Age"].std()
count_nan_age_titanic = train_df["Age"].isnull().sum() # get average, std, and number of NaN values in test_df
average_age_test = test_df["Age"].mean()
std_age_test = test_df["Age"].std()
count_nan_age_test = test_df["Age"].isnull().sum() # generate random numbers between (mean - std) & (mean + std)
rand_1 = np.random.randint(average_age_titanic - std_age_titanic, average_age_titanic + std_age_titanic, size = count_nan_age_titanic)
rand_2 = np.random.randint(average_age_test - std_age_test, average_age_test + std_age_test, size = count_nan_age_test) # plot original Age values
# NOTE: drop all null values, and convert to int
train_df['Age'].dropna().astype(int).hist(bins=70, ax=axis1)
# test_df['Age'].dropna().astype(int).hist(bins=70, ax=axis1) # fill NaN values in Age column with random values generated
train_df["Age"][np.isnan(train_df["Age"])] = rand_1
test_df["Age"][np.isnan(test_df["Age"])] = rand_2 # convert from float to int
train_df['Age'] = train_df['Age'].astype(int)
test_df['Age'] = test_df['Age'].astype(int) # plot new Age Values
train_df['Age'].hist(bins=70, ax=axis2)
# test_df['Age'].hist(bins=70, ax=axis4) # In[134]: # .... continue with plot Age column # peaks for survived/not survived passengers by their age
facet = sns.FacetGrid(train_df, hue="Survived",aspect=4)
facet.map(sns.kdeplot,'Age',shade= True)
facet.set(xlim=(0, train_df['Age'].max()))
facet.add_legend() # average survived passengers by age
fig, axis1 = plt.subplots(1,1,figsize=(18,4))
average_age = train_df[["Age", "Survived"]].groupby(['Age'],as_index=False).mean()
sns.barplot(x='Age', y='Survived', data=average_age) # In[135]: # Cabin
# It has a lot of NaN values, so it won't cause a remarkable impact on prediction
train_df.drop("Cabin",axis=1,inplace=True)
test_df.drop("Cabin",axis=1,inplace=True) # Family # Instead of having two columns Parch & SibSp,
# we can have only one column represent if the passenger had any family member aboard or not,
# Meaning, if having any family member(whether parent, brother, ...etc) will increase chances of Survival or not.
train_df['Family'] = train_df["Parch"] + train_df["SibSp"]
train_df['Family'].loc[train_df['Family'] > 0] = 1
train_df['Family'].loc[train_df['Family'] == 0] = 0 test_df['Family'] = test_df["Parch"] + test_df["SibSp"]
test_df['Family'].loc[test_df['Family'] > 0] = 1
test_df['Family'].loc[test_df['Family'] == 0] = 0 # drop Parch & SibSp
train_df = train_df.drop(['SibSp','Parch'], axis=1)
test_df = test_df.drop(['SibSp','Parch'], axis=1) # plot
fig, (axis1,axis2) = plt.subplots(1,2,sharex=True,figsize=(10,5)) # sns.factorplot('Family',data=train_df,kind='count',ax=axis1)
sns.countplot(x='Family', data=train_df, order=[1,0], ax=axis1) # average of survived for those who had/didn't have any family member
family_perc = train_df[["Family", "Survived"]].groupby(['Family'],as_index=False).mean()
sns.barplot(x='Family', y='Survived', data=family_perc, order=[1,0], ax=axis2) axis1.set_xticklabels(["With Family","Alone"], rotation=0) # In[136]: # Sex # As we see, children(age < ~16) on aboard seem to have a high chances for Survival.
# So, we can classify passengers as males, females, and child
def get_person(passenger):
age,sex = passenger
return 'child' if age < 16 else sex train_df['Person'] = train_df[['Age','Sex']].apply(get_person,axis=1)
test_df['Person'] = test_df[['Age','Sex']].apply(get_person,axis=1) # No need to use Sex column since we created Person column
train_df.drop(['Sex'],axis=1,inplace=True)
test_df.drop(['Sex'],axis=1,inplace=True) # create dummy variables for Person column, & drop Male as it has the lowest average of survived passengers
person_dummies_titanic = pd.get_dummies(train_df['Person'])
person_dummies_titanic.columns = ['Child','Female','Male']
person_dummies_titanic.drop(['Male'], axis=1, inplace=True) person_dummies_test = pd.get_dummies(test_df['Person'])
person_dummies_test.columns = ['Child','Female','Male']
person_dummies_test.drop(['Male'], axis=1, inplace=True) train_df = train_df.join(person_dummies_titanic)
test_df = test_df.join(person_dummies_test) fig, (axis1,axis2) = plt.subplots(1,2,figsize=(10,5)) # sns.factorplot('Person',data=train_df,kind='count',ax=axis1)
sns.countplot(x='Person', data=train_df, ax=axis1) # average of survived for each Person(male, female, or child)
person_perc = train_df[["Person", "Survived"]].groupby(['Person'],as_index=False).mean()
sns.barplot(x='Person', y='Survived', data=person_perc, ax=axis2, order=['male','female','child']) train_df.drop(['Person'],axis=1,inplace=True)
test_df.drop(['Person'],axis=1,inplace=True) # In[137]: # Pclass # sns.factorplot('Pclass',data=train_df,kind='count',order=[1,2,3])
sns.factorplot('Pclass','Survived',order=[1,2,3], data=train_df,size=5) # create dummy variables for Pclass column, & drop 3rd class as it has the lowest average of survived passengers
pclass_dummies_titanic = pd.get_dummies(train_df['Pclass'])
pclass_dummies_titanic.columns = ['Class_1','Class_2','Class_3']
pclass_dummies_titanic.drop(['Class_3'], axis=1, inplace=True) pclass_dummies_test = pd.get_dummies(test_df['Pclass'])
pclass_dummies_test.columns = ['Class_1','Class_2','Class_3']
pclass_dummies_test.drop(['Class_3'], axis=1, inplace=True) train_df.drop(['Pclass'],axis=1,inplace=True)
test_df.drop(['Pclass'],axis=1,inplace=True) train_df = train_df.join(pclass_dummies_titanic)
test_df = test_df.join(pclass_dummies_test) # In[139]: # define training and testing sets X_train = train_df.drop("Survived",axis=1)
Y_train = train_df["Survived"]
X_test = test_df.drop("PassengerId",axis=1).copy() # In[140]: # Logistic Regression logreg = LogisticRegression() logreg.fit(X_train, Y_train) Y_pred = logreg.predict(X_test) logreg.score(X_train, Y_train) # In[141]: # Support Vector Machines svc = SVC() svc.fit(X_train, Y_train) Y_pred = svc.predict(X_test) svc.score(X_train, Y_train) # In[142]: # Random Forests random_forest = RandomForestClassifier(n_estimators=100) random_forest.fit(X_train, Y_train) Y_pred = random_forest.predict(X_test) random_forest.score(X_train, Y_train) # In[143]: # get Correlation Coefficient for each feature using Logistic Regression
coeff_df = DataFrame(train_df.columns.delete(0))
coeff_df.columns = ['Features']
coeff_df["Coefficient Estimate"] = pd.Series(logreg.coef_[0]) # preview
coeff_df # In[ ]:
Classification and Prediction的更多相关文章
- 【转】Windows下使用libsvm中的grid.py和easy.py进行参数调优
libsvm中有进行参数调优的工具grid.py和easy.py可以使用,这些工具可以帮助我们选择更好的参数,减少自己参数选优带来的烦扰. 所需工具:libsvm.gnuplot 本机环境:Windo ...
- A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)
A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON ...
- Applied Deep Learning Resources
Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...
- LIBSVM的使用方法
[原文:http://wenku.baidu.com/view/7e7b6b896529647d27285276.html] 目 录 1 Libsvm下载... 3 2 Libsvm3.0环境变量设 ...
- What is machine learning?
What is machine learning? One area of technology that is helping improve the services that we use on ...
- 高数量类别特征(high-cardinality categorical attributes)的预处理方法
high-cardinality categorical attributes,从字面上理解,即对于某个category特征,不同值的数量非常多,这里暂且把它叫做高数量类别属性.反之,即低数量类别属性 ...
- 机器学习基石8-Noise and Error
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课,我们主要介绍了VC Dimension的概念.如果Hypothese ...
- Intel DAAL AI加速 ——传统决策树和随机森林
# file: dt_cls_dense_batch.py #===================================================================== ...
- liblinear参数及使用方法(原创)
开发语言:JAVA 开发工具:eclipse (下载地址 http://www.eclipse.org/downloads/) liblinear版本:liblinear-1.94.jar (下载地址 ...
随机推荐
- SSH项目配置数据源的方法(jndi)
1.在tomcat6.0/conf/context.xml加入以下代码 [xhtml] view plain copy <Resource name="jdbc/oracleD ...
- 启动tomcat7w.exe提示"指定的服务未安装"
说下本人的情况:因为重装系统,安装在C盘的tomcat的失去作用.想要启动tomcat7w.exe(这是管理服务的)出现“指定服务未安装,无法打开tomcat7服务”的提示.原因是重装系统也导致之前安 ...
- Android应用框架-Volley网络通信框架
1.Volley简介: Volley是Google 推出的 Android 异步网络请求框架和图片加载框架. 在 Google I/O 2013 大会上发布. 2.Volley特点 扩展性强. And ...
- 剑指offer-第五章总结
优化时间和空间效率的方法: 1,时间换空间. 2,动态规划. 3,找规律.
- Django的CSRF机制
原文链接:http://www.cnblogs.com/lins05/archive/2012/12/02/2797996.html 必须有的是: 1.每次初始化一个项目时,都能看到django.mi ...
- EMMC架构
现在EMMC盛行,分析总结还是很有必要的.以下以全志a64为实例切入主题. 这里a64有三个sdc0~2,硬件上sdc2是连接EMMC,这里只分析sdc2的代码. 初始化的代码在linux-3.10/ ...
- 4 字符串 Swift/Objective -C ——《Swift3.0从入门到出家》
4 字符串 Swift and Object-C 字符串由多个字符组成,使用 “” 引起的内容 swift语言中提供了两种字符串:可变字符串和不可变字符串 可变字符串:字符串的内容可以修改,字符串 ...
- Oracle 11G RAC:生产环境下架构
转: it168网站 原创 作者:刘炳林 在真实环境搭建一套Oracle RAC就好比是一堂劳动课,劳动前需要准备好劳动工具,对劳动课内容有充分的认识;按照步骤一步一步进行,需要考虑劳动过程中可能遇 ...
- numpy之初识ndarray
Numpy ndarray numpy的最重要特点就是其N维数组对象(ndarray). ndarray的可以对整块数据执行数学运算,语法与标量元素的元素的运算一致. 如: import numpy ...
- GO数组和切片
数组Array 定义数组的格式:var <varName>[n]<type>,n>0 数组长度也是类型的一部分,因此具有不同长度的数组为不同类型, 不同类型的不能相互赋值 ...