Classification and Prediction
# coding: utf-8 # In[128]: get_ipython().magic(u'matplotlib inline')
import pandas as pd
from pandas import Series,DataFrame
import seaborn as sns
sns.set_style('whitegrid')
pd.set_option('display.mpl_style', 'default')
import numpy as np
import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB train_df= pd.read_csv("/home/lpstudy/下载/train.csv")
test_df = pd.read_csv("/home/lpstudy/下载/test.csv") train_df.head() test_df.head() # In[129]: train_df = train_df.drop(["Ticket","PassengerId","Name"],axis = 1)
test_df = test_df.drop(["Name","Ticket"],axis =1) # In[130]: train_df.head() # In[131]: train_df["Embarked"] = train_df["Embarked"].fillna("S")
#plot
sns.factorplot("Embarked","Survived",data = train_df,size = 6,aspect = 2) fig,(axis1,axis2,axis3) = plt.subplots(1,3,figsize = (15,5)) sns.countplot(x='Embarked', data=train_df, ax=axis1)
sns.countplot(x='Survived', hue="Embarked", data=train_df, order=[1,0], ax=axis2) embark_perc = train_df[["Embarked", "Survived"]].groupby(['Embarked'],as_index=False).mean()
sns.barplot(x='Embarked', y='Survived', data=embark_perc,order=['S','C','Q'],ax=axis3) embark_dummies_train = pd.get_dummies(train_df['Embarked'])
embark_dummies_train.drop(['S'], axis=1, inplace=True) embark_dummies_test = pd.get_dummies(test_df['Embarked'])
embark_dummies_test.drop(['S'], axis=1, inplace=True) train_df = train_df.join(embark_dummies_train)
test_df = test_df.join(embark_dummies_test) train_df.drop(['Embarked'], axis=1,inplace=True)
test_df.drop(['Embarked'], axis=1,inplace=True) # In[132]: test_df["Fare"].fillna(test_df["Fare"].median(), inplace=True) train_df['Fare'] = train_df['Fare'].astype(int)
test_df['Fare'] = test_df['Fare'].astype(int) fare_not_survived = train_df["Fare"][train_df["Survived"] == 0]
fare_survived = train_df["Fare"][train_df["Survived"] == 1] avgerage_fare = DataFrame([fare_not_survived.mean(), fare_survived.mean()])
std_fare = DataFrame([fare_not_survived.std(), fare_survived.std()]) #plot
train_df['Fare'].plot(kind='hist', figsize=(15,3),bins=100, xlim=(0,50)) avgerage_fare.index.names = std_fare.index.names = ["Survived"]
avgerage_fare.plot(yerr=std_fare,kind='bar',legend=False) # In[133]: # Age fig, (axis1,axis2) = plt.subplots(1,2,figsize=(15,4))
axis1.set_title('Original Age values - Titanic')
axis2.set_title('New Age values - Titanic') average_age_titanic = train_df["Age"].mean()
std_age_titanic = train_df["Age"].std()
count_nan_age_titanic = train_df["Age"].isnull().sum() # get average, std, and number of NaN values in test_df
average_age_test = test_df["Age"].mean()
std_age_test = test_df["Age"].std()
count_nan_age_test = test_df["Age"].isnull().sum() # generate random numbers between (mean - std) & (mean + std)
rand_1 = np.random.randint(average_age_titanic - std_age_titanic, average_age_titanic + std_age_titanic, size = count_nan_age_titanic)
rand_2 = np.random.randint(average_age_test - std_age_test, average_age_test + std_age_test, size = count_nan_age_test) # plot original Age values
# NOTE: drop all null values, and convert to int
train_df['Age'].dropna().astype(int).hist(bins=70, ax=axis1)
# test_df['Age'].dropna().astype(int).hist(bins=70, ax=axis1) # fill NaN values in Age column with random values generated
train_df["Age"][np.isnan(train_df["Age"])] = rand_1
test_df["Age"][np.isnan(test_df["Age"])] = rand_2 # convert from float to int
train_df['Age'] = train_df['Age'].astype(int)
test_df['Age'] = test_df['Age'].astype(int) # plot new Age Values
train_df['Age'].hist(bins=70, ax=axis2)
# test_df['Age'].hist(bins=70, ax=axis4) # In[134]: # .... continue with plot Age column # peaks for survived/not survived passengers by their age
facet = sns.FacetGrid(train_df, hue="Survived",aspect=4)
facet.map(sns.kdeplot,'Age',shade= True)
facet.set(xlim=(0, train_df['Age'].max()))
facet.add_legend() # average survived passengers by age
fig, axis1 = plt.subplots(1,1,figsize=(18,4))
average_age = train_df[["Age", "Survived"]].groupby(['Age'],as_index=False).mean()
sns.barplot(x='Age', y='Survived', data=average_age) # In[135]: # Cabin
# It has a lot of NaN values, so it won't cause a remarkable impact on prediction
train_df.drop("Cabin",axis=1,inplace=True)
test_df.drop("Cabin",axis=1,inplace=True) # Family # Instead of having two columns Parch & SibSp,
# we can have only one column represent if the passenger had any family member aboard or not,
# Meaning, if having any family member(whether parent, brother, ...etc) will increase chances of Survival or not.
train_df['Family'] = train_df["Parch"] + train_df["SibSp"]
train_df['Family'].loc[train_df['Family'] > 0] = 1
train_df['Family'].loc[train_df['Family'] == 0] = 0 test_df['Family'] = test_df["Parch"] + test_df["SibSp"]
test_df['Family'].loc[test_df['Family'] > 0] = 1
test_df['Family'].loc[test_df['Family'] == 0] = 0 # drop Parch & SibSp
train_df = train_df.drop(['SibSp','Parch'], axis=1)
test_df = test_df.drop(['SibSp','Parch'], axis=1) # plot
fig, (axis1,axis2) = plt.subplots(1,2,sharex=True,figsize=(10,5)) # sns.factorplot('Family',data=train_df,kind='count',ax=axis1)
sns.countplot(x='Family', data=train_df, order=[1,0], ax=axis1) # average of survived for those who had/didn't have any family member
family_perc = train_df[["Family", "Survived"]].groupby(['Family'],as_index=False).mean()
sns.barplot(x='Family', y='Survived', data=family_perc, order=[1,0], ax=axis2) axis1.set_xticklabels(["With Family","Alone"], rotation=0) # In[136]: # Sex # As we see, children(age < ~16) on aboard seem to have a high chances for Survival.
# So, we can classify passengers as males, females, and child
def get_person(passenger):
age,sex = passenger
return 'child' if age < 16 else sex train_df['Person'] = train_df[['Age','Sex']].apply(get_person,axis=1)
test_df['Person'] = test_df[['Age','Sex']].apply(get_person,axis=1) # No need to use Sex column since we created Person column
train_df.drop(['Sex'],axis=1,inplace=True)
test_df.drop(['Sex'],axis=1,inplace=True) # create dummy variables for Person column, & drop Male as it has the lowest average of survived passengers
person_dummies_titanic = pd.get_dummies(train_df['Person'])
person_dummies_titanic.columns = ['Child','Female','Male']
person_dummies_titanic.drop(['Male'], axis=1, inplace=True) person_dummies_test = pd.get_dummies(test_df['Person'])
person_dummies_test.columns = ['Child','Female','Male']
person_dummies_test.drop(['Male'], axis=1, inplace=True) train_df = train_df.join(person_dummies_titanic)
test_df = test_df.join(person_dummies_test) fig, (axis1,axis2) = plt.subplots(1,2,figsize=(10,5)) # sns.factorplot('Person',data=train_df,kind='count',ax=axis1)
sns.countplot(x='Person', data=train_df, ax=axis1) # average of survived for each Person(male, female, or child)
person_perc = train_df[["Person", "Survived"]].groupby(['Person'],as_index=False).mean()
sns.barplot(x='Person', y='Survived', data=person_perc, ax=axis2, order=['male','female','child']) train_df.drop(['Person'],axis=1,inplace=True)
test_df.drop(['Person'],axis=1,inplace=True) # In[137]: # Pclass # sns.factorplot('Pclass',data=train_df,kind='count',order=[1,2,3])
sns.factorplot('Pclass','Survived',order=[1,2,3], data=train_df,size=5) # create dummy variables for Pclass column, & drop 3rd class as it has the lowest average of survived passengers
pclass_dummies_titanic = pd.get_dummies(train_df['Pclass'])
pclass_dummies_titanic.columns = ['Class_1','Class_2','Class_3']
pclass_dummies_titanic.drop(['Class_3'], axis=1, inplace=True) pclass_dummies_test = pd.get_dummies(test_df['Pclass'])
pclass_dummies_test.columns = ['Class_1','Class_2','Class_3']
pclass_dummies_test.drop(['Class_3'], axis=1, inplace=True) train_df.drop(['Pclass'],axis=1,inplace=True)
test_df.drop(['Pclass'],axis=1,inplace=True) train_df = train_df.join(pclass_dummies_titanic)
test_df = test_df.join(pclass_dummies_test) # In[139]: # define training and testing sets X_train = train_df.drop("Survived",axis=1)
Y_train = train_df["Survived"]
X_test = test_df.drop("PassengerId",axis=1).copy() # In[140]: # Logistic Regression logreg = LogisticRegression() logreg.fit(X_train, Y_train) Y_pred = logreg.predict(X_test) logreg.score(X_train, Y_train) # In[141]: # Support Vector Machines svc = SVC() svc.fit(X_train, Y_train) Y_pred = svc.predict(X_test) svc.score(X_train, Y_train) # In[142]: # Random Forests random_forest = RandomForestClassifier(n_estimators=100) random_forest.fit(X_train, Y_train) Y_pred = random_forest.predict(X_test) random_forest.score(X_train, Y_train) # In[143]: # get Correlation Coefficient for each feature using Logistic Regression
coeff_df = DataFrame(train_df.columns.delete(0))
coeff_df.columns = ['Features']
coeff_df["Coefficient Estimate"] = pd.Series(logreg.coef_[0]) # preview
coeff_df # In[ ]:
Classification and Prediction的更多相关文章
- 【转】Windows下使用libsvm中的grid.py和easy.py进行参数调优
libsvm中有进行参数调优的工具grid.py和easy.py可以使用,这些工具可以帮助我们选择更好的参数,减少自己参数选优带来的烦扰. 所需工具:libsvm.gnuplot 本机环境:Windo ...
- A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)
A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON ...
- Applied Deep Learning Resources
Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...
- LIBSVM的使用方法
[原文:http://wenku.baidu.com/view/7e7b6b896529647d27285276.html] 目 录 1 Libsvm下载... 3 2 Libsvm3.0环境变量设 ...
- What is machine learning?
What is machine learning? One area of technology that is helping improve the services that we use on ...
- 高数量类别特征(high-cardinality categorical attributes)的预处理方法
high-cardinality categorical attributes,从字面上理解,即对于某个category特征,不同值的数量非常多,这里暂且把它叫做高数量类别属性.反之,即低数量类别属性 ...
- 机器学习基石8-Noise and Error
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课,我们主要介绍了VC Dimension的概念.如果Hypothese ...
- Intel DAAL AI加速 ——传统决策树和随机森林
# file: dt_cls_dense_batch.py #===================================================================== ...
- liblinear参数及使用方法(原创)
开发语言:JAVA 开发工具:eclipse (下载地址 http://www.eclipse.org/downloads/) liblinear版本:liblinear-1.94.jar (下载地址 ...
随机推荐
- Struts2常用标签总结
Struts2常用标签总结 一 介绍 1.Struts2的作用 Struts2标签库提供了主题.模板支持,极大地简化了视图页面的编写,而且,struts2的主题.模板都提供了很好的扩展性.实现了更好的 ...
- 【1】基于quartz框架和Zookeeper实现集群化定时任务系统
(1)quartz本身可以支持集群化,是基于数据库做协调,现在构想基于zookeeper做协调实现集群化定时系统 流程图如下:
- 【java规则引擎】java规则引擎搭建开发环境
Drools官网:http://www.jboss.org/drools Drools and jBPM consist out of several projects:(Drools软件包提供的几个 ...
- Cocos2d-x -自己定义动作 圆周运动
原文地址:http://blog.csdn.net/u012945598/article/details/17605409 在之前的文章中我们以前讲过Cocos2d-x中的各种动作的用法,我们先来简单 ...
- 2018年总结和2019年的Flag
---恢复内容开始--- 目前截止到现在工作将近一年半了,今天工作上主要后端主要是用了两种语言,java和Python(2.7),今年完成主要的工作主要使用Python在写一些脚本来满足财务和人资部门 ...
- 【android】Socket简单用法
Socket通常也称做”套接字“,用于描述IP地址和端口,废话不多说,它就是网络通信过程中端点的抽象表示.值得一提的是,Java在包java.net中提供了两个类Socket和ServerSocket ...
- vs2005中microsoft ado data control 6.0控件问题
在vs2005中是没有这个控件的,需要注册,步骤如下: 1. 先到C:\WINDOWS\system32目录下看看你的系统里是否已经有了MSADODC.ocx和MSDATGRD.ocx这两个文件(多半 ...
- nginx安装及编译参数详解
1.centos下Yum安装 Nginx yum list|grep nginx 发现没有可用的结果通过创建下面的文件在系统中添加nginx仓库的yum配置vi /etc/yum.repos.d/ng ...
- 水仙花之java与c++的战争======
总结:同样在C++里可以运行正常的水仙花,在java里不行 为什么??是运算符优先级的问题吗: package com.a; //水仙花数 一个三位数 324:426/195 public class ...
- temp3