Classification and Prediction
# coding: utf-8 # In[128]: get_ipython().magic(u'matplotlib inline')
import pandas as pd
from pandas import Series,DataFrame
import seaborn as sns
sns.set_style('whitegrid')
pd.set_option('display.mpl_style', 'default')
import numpy as np
import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB train_df= pd.read_csv("/home/lpstudy/下载/train.csv")
test_df = pd.read_csv("/home/lpstudy/下载/test.csv") train_df.head() test_df.head() # In[129]: train_df = train_df.drop(["Ticket","PassengerId","Name"],axis = 1)
test_df = test_df.drop(["Name","Ticket"],axis =1) # In[130]: train_df.head() # In[131]: train_df["Embarked"] = train_df["Embarked"].fillna("S")
#plot
sns.factorplot("Embarked","Survived",data = train_df,size = 6,aspect = 2) fig,(axis1,axis2,axis3) = plt.subplots(1,3,figsize = (15,5)) sns.countplot(x='Embarked', data=train_df, ax=axis1)
sns.countplot(x='Survived', hue="Embarked", data=train_df, order=[1,0], ax=axis2) embark_perc = train_df[["Embarked", "Survived"]].groupby(['Embarked'],as_index=False).mean()
sns.barplot(x='Embarked', y='Survived', data=embark_perc,order=['S','C','Q'],ax=axis3) embark_dummies_train = pd.get_dummies(train_df['Embarked'])
embark_dummies_train.drop(['S'], axis=1, inplace=True) embark_dummies_test = pd.get_dummies(test_df['Embarked'])
embark_dummies_test.drop(['S'], axis=1, inplace=True) train_df = train_df.join(embark_dummies_train)
test_df = test_df.join(embark_dummies_test) train_df.drop(['Embarked'], axis=1,inplace=True)
test_df.drop(['Embarked'], axis=1,inplace=True) # In[132]: test_df["Fare"].fillna(test_df["Fare"].median(), inplace=True) train_df['Fare'] = train_df['Fare'].astype(int)
test_df['Fare'] = test_df['Fare'].astype(int) fare_not_survived = train_df["Fare"][train_df["Survived"] == 0]
fare_survived = train_df["Fare"][train_df["Survived"] == 1] avgerage_fare = DataFrame([fare_not_survived.mean(), fare_survived.mean()])
std_fare = DataFrame([fare_not_survived.std(), fare_survived.std()]) #plot
train_df['Fare'].plot(kind='hist', figsize=(15,3),bins=100, xlim=(0,50)) avgerage_fare.index.names = std_fare.index.names = ["Survived"]
avgerage_fare.plot(yerr=std_fare,kind='bar',legend=False) # In[133]: # Age fig, (axis1,axis2) = plt.subplots(1,2,figsize=(15,4))
axis1.set_title('Original Age values - Titanic')
axis2.set_title('New Age values - Titanic') average_age_titanic = train_df["Age"].mean()
std_age_titanic = train_df["Age"].std()
count_nan_age_titanic = train_df["Age"].isnull().sum() # get average, std, and number of NaN values in test_df
average_age_test = test_df["Age"].mean()
std_age_test = test_df["Age"].std()
count_nan_age_test = test_df["Age"].isnull().sum() # generate random numbers between (mean - std) & (mean + std)
rand_1 = np.random.randint(average_age_titanic - std_age_titanic, average_age_titanic + std_age_titanic, size = count_nan_age_titanic)
rand_2 = np.random.randint(average_age_test - std_age_test, average_age_test + std_age_test, size = count_nan_age_test) # plot original Age values
# NOTE: drop all null values, and convert to int
train_df['Age'].dropna().astype(int).hist(bins=70, ax=axis1)
# test_df['Age'].dropna().astype(int).hist(bins=70, ax=axis1) # fill NaN values in Age column with random values generated
train_df["Age"][np.isnan(train_df["Age"])] = rand_1
test_df["Age"][np.isnan(test_df["Age"])] = rand_2 # convert from float to int
train_df['Age'] = train_df['Age'].astype(int)
test_df['Age'] = test_df['Age'].astype(int) # plot new Age Values
train_df['Age'].hist(bins=70, ax=axis2)
# test_df['Age'].hist(bins=70, ax=axis4) # In[134]: # .... continue with plot Age column # peaks for survived/not survived passengers by their age
facet = sns.FacetGrid(train_df, hue="Survived",aspect=4)
facet.map(sns.kdeplot,'Age',shade= True)
facet.set(xlim=(0, train_df['Age'].max()))
facet.add_legend() # average survived passengers by age
fig, axis1 = plt.subplots(1,1,figsize=(18,4))
average_age = train_df[["Age", "Survived"]].groupby(['Age'],as_index=False).mean()
sns.barplot(x='Age', y='Survived', data=average_age) # In[135]: # Cabin
# It has a lot of NaN values, so it won't cause a remarkable impact on prediction
train_df.drop("Cabin",axis=1,inplace=True)
test_df.drop("Cabin",axis=1,inplace=True) # Family # Instead of having two columns Parch & SibSp,
# we can have only one column represent if the passenger had any family member aboard or not,
# Meaning, if having any family member(whether parent, brother, ...etc) will increase chances of Survival or not.
train_df['Family'] = train_df["Parch"] + train_df["SibSp"]
train_df['Family'].loc[train_df['Family'] > 0] = 1
train_df['Family'].loc[train_df['Family'] == 0] = 0 test_df['Family'] = test_df["Parch"] + test_df["SibSp"]
test_df['Family'].loc[test_df['Family'] > 0] = 1
test_df['Family'].loc[test_df['Family'] == 0] = 0 # drop Parch & SibSp
train_df = train_df.drop(['SibSp','Parch'], axis=1)
test_df = test_df.drop(['SibSp','Parch'], axis=1) # plot
fig, (axis1,axis2) = plt.subplots(1,2,sharex=True,figsize=(10,5)) # sns.factorplot('Family',data=train_df,kind='count',ax=axis1)
sns.countplot(x='Family', data=train_df, order=[1,0], ax=axis1) # average of survived for those who had/didn't have any family member
family_perc = train_df[["Family", "Survived"]].groupby(['Family'],as_index=False).mean()
sns.barplot(x='Family', y='Survived', data=family_perc, order=[1,0], ax=axis2) axis1.set_xticklabels(["With Family","Alone"], rotation=0) # In[136]: # Sex # As we see, children(age < ~16) on aboard seem to have a high chances for Survival.
# So, we can classify passengers as males, females, and child
def get_person(passenger):
age,sex = passenger
return 'child' if age < 16 else sex train_df['Person'] = train_df[['Age','Sex']].apply(get_person,axis=1)
test_df['Person'] = test_df[['Age','Sex']].apply(get_person,axis=1) # No need to use Sex column since we created Person column
train_df.drop(['Sex'],axis=1,inplace=True)
test_df.drop(['Sex'],axis=1,inplace=True) # create dummy variables for Person column, & drop Male as it has the lowest average of survived passengers
person_dummies_titanic = pd.get_dummies(train_df['Person'])
person_dummies_titanic.columns = ['Child','Female','Male']
person_dummies_titanic.drop(['Male'], axis=1, inplace=True) person_dummies_test = pd.get_dummies(test_df['Person'])
person_dummies_test.columns = ['Child','Female','Male']
person_dummies_test.drop(['Male'], axis=1, inplace=True) train_df = train_df.join(person_dummies_titanic)
test_df = test_df.join(person_dummies_test) fig, (axis1,axis2) = plt.subplots(1,2,figsize=(10,5)) # sns.factorplot('Person',data=train_df,kind='count',ax=axis1)
sns.countplot(x='Person', data=train_df, ax=axis1) # average of survived for each Person(male, female, or child)
person_perc = train_df[["Person", "Survived"]].groupby(['Person'],as_index=False).mean()
sns.barplot(x='Person', y='Survived', data=person_perc, ax=axis2, order=['male','female','child']) train_df.drop(['Person'],axis=1,inplace=True)
test_df.drop(['Person'],axis=1,inplace=True) # In[137]: # Pclass # sns.factorplot('Pclass',data=train_df,kind='count',order=[1,2,3])
sns.factorplot('Pclass','Survived',order=[1,2,3], data=train_df,size=5) # create dummy variables for Pclass column, & drop 3rd class as it has the lowest average of survived passengers
pclass_dummies_titanic = pd.get_dummies(train_df['Pclass'])
pclass_dummies_titanic.columns = ['Class_1','Class_2','Class_3']
pclass_dummies_titanic.drop(['Class_3'], axis=1, inplace=True) pclass_dummies_test = pd.get_dummies(test_df['Pclass'])
pclass_dummies_test.columns = ['Class_1','Class_2','Class_3']
pclass_dummies_test.drop(['Class_3'], axis=1, inplace=True) train_df.drop(['Pclass'],axis=1,inplace=True)
test_df.drop(['Pclass'],axis=1,inplace=True) train_df = train_df.join(pclass_dummies_titanic)
test_df = test_df.join(pclass_dummies_test) # In[139]: # define training and testing sets X_train = train_df.drop("Survived",axis=1)
Y_train = train_df["Survived"]
X_test = test_df.drop("PassengerId",axis=1).copy() # In[140]: # Logistic Regression logreg = LogisticRegression() logreg.fit(X_train, Y_train) Y_pred = logreg.predict(X_test) logreg.score(X_train, Y_train) # In[141]: # Support Vector Machines svc = SVC() svc.fit(X_train, Y_train) Y_pred = svc.predict(X_test) svc.score(X_train, Y_train) # In[142]: # Random Forests random_forest = RandomForestClassifier(n_estimators=100) random_forest.fit(X_train, Y_train) Y_pred = random_forest.predict(X_test) random_forest.score(X_train, Y_train) # In[143]: # get Correlation Coefficient for each feature using Logistic Regression
coeff_df = DataFrame(train_df.columns.delete(0))
coeff_df.columns = ['Features']
coeff_df["Coefficient Estimate"] = pd.Series(logreg.coef_[0]) # preview
coeff_df # In[ ]:
Classification and Prediction的更多相关文章
- 【转】Windows下使用libsvm中的grid.py和easy.py进行参数调优
libsvm中有进行参数调优的工具grid.py和easy.py可以使用,这些工具可以帮助我们选择更好的参数,减少自己参数选优带来的烦扰. 所需工具:libsvm.gnuplot 本机环境:Windo ...
- A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)
A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON ...
- Applied Deep Learning Resources
Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...
- LIBSVM的使用方法
[原文:http://wenku.baidu.com/view/7e7b6b896529647d27285276.html] 目 录 1 Libsvm下载... 3 2 Libsvm3.0环境变量设 ...
- What is machine learning?
What is machine learning? One area of technology that is helping improve the services that we use on ...
- 高数量类别特征(high-cardinality categorical attributes)的预处理方法
high-cardinality categorical attributes,从字面上理解,即对于某个category特征,不同值的数量非常多,这里暂且把它叫做高数量类别属性.反之,即低数量类别属性 ...
- 机器学习基石8-Noise and Error
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课,我们主要介绍了VC Dimension的概念.如果Hypothese ...
- Intel DAAL AI加速 ——传统决策树和随机森林
# file: dt_cls_dense_batch.py #===================================================================== ...
- liblinear参数及使用方法(原创)
开发语言:JAVA 开发工具:eclipse (下载地址 http://www.eclipse.org/downloads/) liblinear版本:liblinear-1.94.jar (下载地址 ...
随机推荐
- gatsbyjs 了解
1. 模型 2. 总结&&资料 从模型上可以看出和jamstack 提出的架构模型比较相似,可以看成是一个具体的实现,功能还是比较强大的 https://www.gatsbyjs.o ...
- Oracle cursor_sharing 参数 详解
一. 官网的说明 http://download.oracle.com/docs/cd/E11882_01/server.112/e17110/initparams042.htm#REFRN10025 ...
- poj 3415 Common Substrings——后缀数组+单调栈
题目:http://poj.org/problem?id=3415 因为求 LCP 是后缀数组的 ht[ ] 上的一段取 min ,所以考虑算出 ht[ ] 之后枚举每个位置作为右端的贡献. 一开始想 ...
- .NET泛型与非泛型的问题
泛型集合通常情况下,建议您使用泛型集合,因为这样可以获得类型安全的直接优点而不需要从基集合类型派生并实现类型特定的成员.下面的泛型类型对应于现有的集合类型:1.List 是对应于 ArrayList ...
- xshell密码不让输入 修改
不允许点击输入密码:解决方案 https://zhidao.baidu.com/question/2266139012830466068.html
- Ubuntu 14.04报“leaking memory”错误
在做一些实验的时候,临时配置了笔记本网卡eth0的IP地址,结果出现了以下错误, $ sudo ifconfig eth0 192.168.2.100/24 no talloc stackframe ...
- mysql权限验证流程
mysql用户管理,逐级下查 mysql库的user表连接信息,全局权限db表记录用户对库的权限,对某个数据库的所有表的权限tables_priv 设置用户对表的权限columns_priv设置用户对 ...
- What’s that ALUA exactly?
What’s that ALUA exactly? 29 September, 20098 Comments Of course by now we have all read the excelle ...
- 中间件——Oracle Fusion Middleware
Oracle Fusion Middleware定义: 什么是Oracle Fusion Middleware Oracle Fusion Middleware is a comprehensive ...
- ISO模型的七个分层
要想理解socket首先得熟悉一下TCP/IP协议族, TCP/IP(Transmission Control Protocol/Internet Protocol)即传输控制协议/网间协议,定义了主 ...