题目描述

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

【思路】可归纳得出结论: f(n) = f(n-1) + f(n-2), (n > 2)。

另外:

(1)1 * 3方块 覆 盖3*n区域:f(n) = f(n-1) + f(n - 3), (n > 3)
(2)1 * 4方块 覆 盖4*n区域:f(n) = f(n-1) + f(n - 4),(n > 4)
更一般的结论,如果用1*m的方块覆盖m*n区域,递推关系式为f(n) = f(n-1) + f(n-m),(n > m)。
 class Solution {
public:
int rectCover(int number) {
if(number == || number == || number == )
return number;
else
return rectCover(number - ) + rectCover(number - );
}
};

[剑指Offer] 10.矩形覆盖的更多相关文章

  1. 剑指Offer 10. 矩形覆盖 (递归)

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目地址 https://www.nowcoder.com/ ...

  2. 剑指offer 10矩形覆盖

    我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法 java版本: public class Solution { publ ...

  3. 剑指Offer:矩形覆盖【N1】

    剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的 ...

  4. 剑指OFFER之矩形覆盖(九度OJ1390)

    题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入 ...

  5. 【剑指offer】矩形覆盖

    一.题目: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.思路: 斐波那契数列 三.代码:     

  6. 剑指offer:矩形覆盖

    题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解题思路: 和跳台阶那道题差不多.分别以矩形的两条边长做拓 ...

  7. 《剑指offer》矩形覆盖

    一.题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.输入描述 输入n 三.输出描述 输出有多少种不同的覆 ...

  8. 【牛客网-剑指offer】矩形覆盖

    题目: 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析: 假设2为高,n为宽 因为高为2固定,会出现固定情况,即无论 ...

  9. 剑指Offer之矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 比如n=3时,2*3的矩形块有3种覆盖方法: 思路:与裴波拉 ...

随机推荐

  1. D - 湫湫系列故事——减肥记II

    虽然制定了减肥食谱,但是湫湫显然克制不住吃货的本能,根本没有按照食谱行动! 于是,结果显而易见… 但是没有什么能难倒高智商美女湫湫的,她决定另寻对策——吃没关系,咱吃进去再运动运动消耗掉不就好了? 湫 ...

  2. nignx 配置服务集群

    前言:这里只是简单介绍Nginx简单APP Server集群的搭建和设置发向代理. 后续有时间我会陆续加上Nginx的基础知识.三种负载均衡的策略设置.实现算法的介绍.(最后如果有测试环境,再模拟Ng ...

  3. 微信小程序缓存

    购物车数据加入缓存,相同的商品值修改数量,然后再次加入缓存中 修改购物车的数据的时候同理,都是修改缓存数据然后加入到缓存中. 具体的使用方法看官方文档,我只是提供思路

  4. FireDAC内存表

    procedure TForm1.FormCreate(Sender: TObject); Var i:integer; begin // i:=; self.FDMemTable1.FieldDef ...

  5. Xshell6破解

    链接: https://pan.baidu.com/s/1P9kMmGdLfpPPxEgUxNXrhw 提取码: s3js

  6. python应用:主题分类(gensim lda)

    安装第三方包:gensim 首先,执行去停词操作(去除与主题无关的词) #-*-coding:utf8-*- import jieba def stopwordslist(filepath): sto ...

  7. 如何在hadoop中使用外部的python程序文件

    业务场景大概是这样,我需要在公司hadoop集群上对博文进行结巴分词.我的数据是存储在hive表格中的,数据量涉及到五百万用户三个月内发的所有博文. 首先对于数据来说,很简单,在hive表格中就是两列 ...

  8. PHP.44-TP框架商城应用实例-后台19-权限管理-RBAC需求分析

    RBAC:Role Based Access Control:基于角色的访问控制 需求分析:[类似效果如下图] 1.权限,角色,管理员 2.权限管理[无限级] 注意:权限会被分配给角色,而不是给管理员 ...

  9. 3,jieba gensim 最好别分家之最简单的相似度实现

    简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...

  10. LeetCode:22. Generate Parentheses(Medium)

    1. 原题链接 https://leetcode.com/problems/generate-parentheses/description/ 2. 题目要求 给出一个正整数n,请求出由n对合法的圆括 ...