Description

一个有N个元素的集合有2^N 个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得

它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

Input

一行两个整数N,K

Output

一行为答案。

Sample Input

3 2

Sample Output

6

HINT

【样例说明】

假设原集合为{A,B,C}

则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}

【数据说明】

​ 对于100%的数据,1≤N≤1000000;0≤K≤N;

题解

bzoj题目链接(权限题)

前置知识:广义容斥原理

考虑对于每个方案作为一个元素,每一位相同作为一个性质。

考虑在\(n\)个里选\(x\)个,要满足这\(x\)个性质,即集合中有\(x\)个相同,剩下\(n-x\)个集合里的元素可选可不选,但是不能都不选,要减去空集的一个,注意这里的集合指的是题目中的集合,

所以可得:

\[\alpha (x) = \binom{n}{x} (2^{2^{n-x}}-1)
\]

然后设\(\beta (x)\)为恰好有x个性质的元素个数,可得:

\[\beta(x) = \sum _{i=x} ^{n} (-1)^{i-x}\binom{i}{x} \alpha(i)
\]

答案为\(\beta (k)\)。

#include<bits/stdc++.h>
using namespace std; #define int long long void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) x=-x,putchar('-');
if(!x) return ;print(x/10),putchar(x%10+'0');
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define maxn 1000050
#define mod 1000000007 int n,fac[maxn],ifac[maxn],f[maxn],k; int qpow(int a,int x) {
int res=1;
for(;x;x>>=1,a=a*a%mod) if(x&1) res=res*a%mod;
return res;
} signed main() {
read(n),read(k);f[0]=2,fac[0]=ifac[0]=1;
for(int i=1;i<=n;i++) f[i]=f[i-1]*f[i-1]%mod,fac[i]=fac[i-1]*i%mod;
ifac[n]=qpow(fac[n],mod-2);
for(int i=n-1;i>=0;i--) ifac[i]=ifac[i+1]*(i+1)%mod;
int ans=0;
for(int op=-1,i=k;i<=n;i++) {
op=-op;
ans=(ans+op*fac[n]*ifac[i]%mod*ifac[n-i]%mod*(f[n-i]-1)%mod*fac[i]%mod*ifac[k]%mod*ifac[i-k]%mod)%mod;
}
write((ans%mod+mod)%mod);
return 0;
}

[bzoj2893] 集合计数的更多相关文章

  1. 【BZOJ-2839】集合计数 容斥原理 + 线性推逆元 + 排列组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 229  Solved: 120[Submit][Status][Discuss] ...

  2. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

  3. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  4. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  5. BZOJ 2839: 集合计数 解题报告

    BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...

  6. bzoj2839 集合计数

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  Logout 捐赠本站 2839: 集合计数 Time ...

  7. 【BZOJ2839】集合计数&&【BZOJ3622】已经没有什么好害怕的了

    再谈容斥原理来两道套路几乎一致的题目[BZOJ2839]集合计数Description一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交 ...

  8. 【BZOJ2839】集合计数(容斥,动态规划)

    [BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...

  9. 【BZOJ 2839】 2839: 集合计数 (容斥原理)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 399  Solved: 217 Description 一个有N个元素的集合有2 ...

随机推荐

  1. pyqt4学习资料

    官方文档: http://pyqt.sourceforge.net/Docs/PyQt4/classes.html 啄木鸟社区:https://wiki.woodpecker.org.cn/moin/ ...

  2. 11 非阻塞套接字与IO多路复用(进阶)

    1.非阻塞套接字 第一部分 基本IO模型 1.普通套接字实现的服务端的缺陷 一次只能服务一个客户端! 2.普通套接字实现的服务端的瓶颈!!! accept阻塞! 在没有新的套接字来之前,不能处理已经建 ...

  3. java web相对路径和绝对路径总结

    java web 开发过程中很多地方涉及url路径的问题,比如jsp页面.servlet之间的跳转.其实,可以将url中的/xxx看成一级目录,然后像看待目录层级之间的关系那样去看待url路径.接下来 ...

  4. Spring MVC怎么统一异常管理?

    1. 在类上加上@ControllerAdvice注解 2. 在方法上加上@ExceptionHandler注解 @ExceptionHandler(Exception.class) @Respons ...

  5. nginx+tomcat 反向代理 负载均衡配置

    1.nginx的安装和配置见:http://www.cnblogs.com/ll409546297/p/6795362.html 2.tomcat部署项目到对应的服务器上面并启动,不详解 3.在ngi ...

  6. 深入理解计算机系统(1)--hello world程序的生命周期

    第一篇笔记的主题是讨论Hello World程序的生命周期,程序是最简单的hello world程序,使用高级C语言编写. 先介绍整个生命周期中涉及到的几个部分以及相应的概念,然后总结整个生命周期,最 ...

  7. nginx 负载均衡 反向代理

    nginx 通过方向代理实现负载均衡,负载均衡是大流量网站要做的措施,单从字面上的意思来理解为N台服务器平均分担负载,不会因为某一台服务器负载高宕机而影响用户访问网站,负载均衡至少需要三台服务器, 既 ...

  8. 纯js生成QRCode

    纯js,不依赖jquery,非常好用,废话不多说,直接上代码! <!DOCTYPE html> <html> <head> <meta charset=&qu ...

  9. 在PXC中重新添加掉线节点

      Preface       When we add a new node into PXC structure,it will estimate the mothed(IST/SST) to tr ...

  10. quartz 使用总结

    quartz是一个任务调度框架,具体的用途比如说,我想我的程序在每天的3点干什么事,每隔多长时间做一件什么事.quartz框架就可以完美地解决这些. 1.xml配置方式 首先我是用spring来管理的 ...