这道题要求我们求出图中的给定的两个节点(一个起点一个终点,但这是无向图)之间所有“路径中最大权值”的最小值,这无疑是动态规划。

我开始时想到根据起点和终点用动态规划直接求结果,但最终由于题中S过大,会超时。

超时的代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <string>
#include <algorithm> using namespace std;
const int MAX = 1000000;
int w[100][100];
int vis[100];
int C,S,Q; int f(int s, int t)
{
vis[t]=1;
int minb=MAX,tmp;
for(int i=0; i<C; i++) if(!vis[i] && w[t][i]!=-1)
{
if(i==s) { minb=w[t][i]; continue;}
tmp = f(s,i);
tmp = (tmp > w[t][i] ? tmp : w[t][i]);
minb = (minb < tmp ? minb : tmp);
}
vis[t]=0;
return minb;
}
int main()
{
int c1,c2;
int Case=0;
while(cin >> C >> S >> Q && C!=0)
{
memset(w,-1,sizeof(w));
for(int i=0; i<S; i++) {
cin >> c1 >> c2; cin >> w[c1-1][c2-1]; w[c2-1][c1-1]=w[c1-1][c2-1];
}
if(Case) cout << endl;
cout << "Case #" << ++Case << endl; while(Q--)
{
memset(vis,0,sizeof(vis));
cin >> c1 >> c2;
int ans = f(c1-1,c2-1);
if(ans==MAX) cout << "no path\n";
else cout << ans << endl;
}
}
return 0;
}

被判超时后想到,由于S过大,即要求的起始节点对过多,最好一次性全部求出来。在uva的board中看到别人有使用Floyd_WarShall算法的,受到启发,就自己思考了一下。

Floyd_WarShall算法本身肯定无法完成这题的解答,但只要改写其更新节点值的式子就可以解决这道题。我将更改后的算法命名为Floyd_WarShallEx,代码如下:

void Floyd_WarShallEx()
{
for(int k=0; k<C; k++)
{
for(int i=0; i<C; i++)
{
for(int j=0; j<C; j++)
{
w[i][j] = (w[i][j] < (w[i][k]>w[k][j]?w[i][k]:w[k][j]) ? w[i][j] : (w[i][k]>w[k][j]?w[i][k]:w[k][j]));
}
}
}
}

其中C为图中节点数,w[i][j]表示节点对i,j之间题目所要求的结果。通过下式更新w[i][j]的值:

w[i][j] = (w[i][j] < (w[i][k]>w[k][j]?w[i][k]:w[k][j]) ? w[i][j] : (w[i][k]>w[k][j]?w[i][k]:w[k][j]));

至此,调用Floyd_WarShallEx函数就可以完成所有节点对题目要求的结果的计算。

完整的解题代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <string>
#include <algorithm> using namespace std;
const int MAX = 1000000;
int w[100][100];
int vis[100];
int C,S,Q; void Floyd_WarShallEx()
{
for(int k=0; k<C; k++)
{
for(int i=0; i<C; i++)
{
for(int j=0; j<C; j++)
{
w[i][j] = (w[i][j] < (w[i][k]>w[k][j]?w[i][k]:w[k][j]) ? w[i][j] : (w[i][k]>w[k][j]?w[i][k]:w[k][j]));
}
}
}
} int main()
{
int c1,c2;
int Case=0;
while(cin >> C >> S >> Q && C!=0)
{
for(int i=0; i<C; i++)
for(int j=0; j<C; j++)
w[i][j]=MAX;
for(int i=0; i<S; i++) {
cin >> c1 >> c2; cin >> w[c1-1][c2-1]; w[c2-1][c1-1]=w[c1-1][c2-1];
}
Floyd_WarShallEx(); if(Case) cout << endl;
cout << "Case #" << ++Case << endl; while(Q--)
{
cin >> c1 >> c2;
if(w[c1-1][c2-1]==MAX) cout << "no path\n";
else cout << w[c1-1][c2-1] << endl;
}
}
return 0;
}

附上题目:

Consider yourself lucky! Consider yourself lucky to be still breathing and having fun participating in this contest. But we apprehend that many of your descendants may not have this luxury. For, as you know, we are the dwellers of one of the most polluted cities on earth. Pollution is everywhere, both in the environment and in society and our lack of consciousness is simply aggravating the situation.

However, for the time being, we will consider only one type of pollution ­- the sound pollution. The loudness or intensity level of sound is usually measured in decibels and sound having intensity level 130 decibels or higher is considered painful. The intensity level of normal conversation is 60­-65 decibels and that of heavy traffic is 70-­80 decibels.

Consider the following city map where the edges refer to streets and the nodes refer to crossings. The integer on each edge is the average intensity level of sound (in decibels) in the corresponding street.

To get from crossing A to crossing G you may follow the following path: A­C­F­G. In that case you must be capable of tolerating sound intensity as high as 140 decibels. For the paths A­B­E­GA­B­D­G and A­C­F­D­G you must tolerate respectively 90, 120 and 80 decibels of sound intensity. There are other paths, too. However, it is clear that A­C­F­D­G is the most comfortable path since it does not demand you to tolerate more than 80 decibels.

In this problem, given a city map you are required to determine the minimum sound intensity level you must be able to tolerate in order to get from a given crossing to another.

Input

The input may contain multiple test cases.

The first line of each test case contains three integers  and where C indicates the number of crossings (crossings are numbered using distinct integers ranging from 1 to C), S represents the number of streets and Q is the number of queries.

Each of the next S lines contains three integers: c1c2 and d indicating that the average sound intensity level on the street connecting the crossings c1 and c2 ( ) is d decibels.

Each of the next Q lines contains two integers c1 and c2 ( ) asking for the minimum sound intensity level you must be able to tolerate in order to get from crossing c1 to crossing c2.

The input will terminate with three zeros form CS and Q.

Output

For each test case in the input first output the test case number (starting from 1) as shown in the sample output. Then for each query in the input print a line giving the minimum sound intensity level (in decibels) you must be able to tolerate in order to get from the first to the second crossing in the query. If there exists no path between them just print the line ``no path".

Print a blank line between two consecutive test cases.

Sample Input

7 9 3
1 2 50
1 3 60
2 4 120
2 5 90
3 6 50
4 6 80
4 7 70
5 7 40
6 7 140
1 7
2 6
6 2
7 6 3
1 2 50
1 3 60
2 4 120
3 6 50
4 6 80
5 7 40
7 5
1 7
2 4
0 0 0

Sample Output

Case #1
80
60
60 Case #2
40
no path
80

UVa 10048: Audiophobia的更多相关文章

  1. uva 10048 Audiophobia(最小生成树)

    题目链接:10048 - Audiophobia 题目大意:有n个城市,和m条街道,每条街道有一个噪音值,q次去问,从城市a到城市b,路径上分贝值的最大值最小为多少. 解题思路:与uva 10099的 ...

  2. UVA - 10048 Audiophobia (Floyd应用)

    题意:求出两点之间所有路径最大权值的最小值. 思路:转变一下Floyd的形式即可: 注意:注意初始化问题,还有UVA奇葩的输出形式. 代码如下: #include<iostream> #i ...

  3. UVa 10048 - Audiophobia(Floyd变形)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. UVa 10048 Audiophobia【Floyd】

    题意:给出一个c个点,s条边组成的无向图,求一点到另一点的路径上最大权值最小的路径,输出这个值 可以将这个 d[i][j]=min(d[i][j],d[i][k]+d[k][j]) 改成 d[i][j ...

  5. UVA 10048 Audiophobia 任意两点的路径上最大的边

    题目是要求任意给定两点的的路径上最大的边,最终输出这些最大边中最小的值,也就是求一条路径使得这条路径上最大的边在所有连通两点的路径中最短.根据Floyd—Warshall算法改造一下就行了.dp[i] ...

  6. UVA - 10048 Audiophobia Floyd

    思路:套用Floyd算法思想,d(i, j) = min(d(i,j), max(d(i,k), d(k,j)),就能很方便求得任意两点之间的最小噪音路径. AC代码 #include <cst ...

  7. UVA - 10048 Audiophobia(Floyd求路径上最大值的最小)

    题目&分析: 思路: Floyd变形(见上述紫书分析),根据题目要求对应的改变判断条件来解题. 代码: #include <bits/stdc++.h> #define inf 0 ...

  8. uva 10048 Audiophobia UVA - 10048

    题目简介 一个无向正权图,求任意两个节点之间的路径里最短的路径长度. 直接Floyd解决,就是注意要把Floyd的DP式子改一下成 G[i][j]=min(G[i][j],max(G[i][k],G[ ...

  9. UVa 10048 (Floyd变形) Audiophobia

    题意: 给一个带权无向图,和一些询问,每次询问两个点之间最大权的最小路径. 分析: 紫书上的题解是错误的,应该是把原算法中的加号变成max即可.但推理过程还是类似的,如果理解了Floyd算法的话,这个 ...

随机推荐

  1. TsFltMgr.sys系统蓝屏的原因就在于QQ电脑管家!

    同事一WindowsXP系统,正常执行,关闭后,第二天无法启动,详细症状为: (1)安全模式以及带网络功能的安全模式都能够进入: (2)正常模式,还没出现WindowXP滚动栏就開始重新启动: (3) ...

  2. Spring Remoting by HTTP Invoker Example--reference

    Spring provides its own implementation of remoting service known as HttpInvoker. It can be used for ...

  3. Android 交错 GridView

    原文地址 本文演示在你的 Android 应用程序中显示交错 GridView(Staggered GridView ). 下载 Demo 交错 GridView 交错 GridView 只是具有不等 ...

  4. linux下常用基本命令操作

    #fdisk -l 查看硬盘信息 cat /proc/cpuinfo 查看CPU信息 free -m 查看内存信息 ethtool eth0 查看网卡信息 df -h 查看硬盘各分区可用空间大小 ca ...

  5. IIS配置

    IIS配置文档: 1.安装IIS.控制面板→程序→打开关闭Windows功能,Web管理服务和万维网服务都勾上. 2.部署网站:ASP.Net项目的发布:项目中点右键“发布”,选择“文件系统”,发布到 ...

  6. XML数据的读取—数据库配置文件

    数据库配置文件(config.xml) <?xml version="1.0" encoding="utf-8"?> <configurati ...

  7. linux查询当前进程数的命令

    $command = "ps aux | grep  'zb_insure/get_order_info_from_queue.php' | grep -v 'grep' |  grep - ...

  8. php进程继续执行

    虽然浏览器提示localhost 的服务器响应时间过长.但是进程在后台继续执行,数据库的条数在增加.

  9. NotImplementedException未实现该方法或操作

    使用DevExpress为控件CheckedListBoxControl绑定DataSource时,引发异常“NotImplementedException未实现该方法或操作”,代码如下: this. ...

  10. rpm命令数据库修复日志

    今天在linux安装软件过程中遇到了一个小坑,rpm数据库被破坏: 状况: #rpm -qa | grep rpm 返回: [解决方案] 删除旧数据库,然后重建数据库: 删除旧数据库: # rm /v ...