poj1088 经典DP
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 88296 | Accepted: 33100 |
Description
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-...-3-2-1更长。事实上,这是最长的一条。
Input
Output
Sample Input
5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
Sample Outpu25
题目大意:汉语的,很好懂,就是让你求最长的递减路径有多长,注意是求下降的次数而不是下降的距离。
思路分析:第一感觉dfs可以做,但是做该题之前发现这道题是归到DP里面的,正好刚学习了一些DP的知识,这道题也算是正式做的第一道DP题目吧,
首先要确定状态,在本题中每一点的状态就是以该点为最高点可以下降的最长路径,然后要明确一状态是如何进行转移的,以数组f来记录每一点的状态,
避免重复搜索,这一点要优于DFS,简单分析我们就可以找到递推关系,f[i][j]=max{f[i-1][j],f[i][j-1],f[i][j+1],f[i+1][j]}+1,代码的实现就要容易
的多了,但是弱在写dp函数判定是否状态转移的时候把行和列搞反了,wa了几发,做题一定要谨慎啊!
代码:
/*dp,记忆化搜索
首先应该确定状态
用数组来保存每一点的状态,
状态的转移在dp函数中已经给出
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
const int maxn=110;
int m[maxn][maxn],f[maxn][maxn];//f数组代表以该点为最高点的最多的步数
int R,C;
int dp(int x,int y)
{
if(f[x][y]) return f[x][y];//避免重复搜索
f[x][y]=1;//每一点下滑梯数最小为1
if(x>=1&&m[x][y]>m[x-1][y]) f[x][y]=max(f[x][y],dp(x-1,y)+1);
if(y>=1&&m[x][y]>m[x][y-1]) f[x][y]=max(f[x][y],dp(x,y-1)+1);
if(x<R-1&&m[x][y]>m[x+1][y]) f[x][y]=max(f[x][y],dp(x+1,y)+1);
if(y<C-1&&m[x][y]>m[x][y+1]) f[x][y]=max(f[x][y],dp(x,y+1)+1);
return f[x][y];
}
int main()
{
int i,j;
scanf("%d%d",&R,&C);
memset(f,0,sizeof(f));
for(i=0;i<R;i++)
for(j=0;j<C;j++)
cin>>m[i][j];
for(i=0;i<R;i++)
for(j=0;j<C;j++)
dp(i,j);
int t=f[0][0];
for(i=0;i<R;i++)
for(j=0;j<C;j++)
if(t<f[i][j]) t=f[i][j];
cout<<t<<endl;
return 0;
}
poj1088 经典DP的更多相关文章
- HDU 1003 Max Sum --- 经典DP
HDU 1003 相关链接 HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...
- poj1458 求最长公共子序列 经典DP
Common Subsequence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 45763 Accepted: 18 ...
- NYOJ - 矩形嵌套(经典dp)
矩形嵌套时间限制:3000 ms | 内存限制:65535 KB 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b< ...
- 51nod 1412 AVL树的种类(经典dp)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1412 题意: 思路: 经典dp!!!可惜我想不到!! $dp[i][k] ...
- NYOJ 16 矩形嵌套(经典DP)
http://acm.nyist.net/JudgeOnline/problem.php?pid=16 矩形嵌套 时间限制:3000 ms | 内存限制:65535 KB 难度: ...
- poj 1050 To the Max 最大子矩阵和 经典dp
To the Max Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- CS Academy Distinct Neighbours(经典dp)
CS Academy Distinct Neighbours(经典dp) 题意: 求相邻无相同数字的合法的排列数 题解: 题解 先将相同的数字分为一类,假设共有n组 定义\(dp[i][j]\)表示前 ...
- 【经典dp 技巧】8.13序列
经典的拆绝对值 题目大意 给定$n$个具有顺序的序列,允许对每个序列循环移动.记第$i$个序列尾元素为$x$,$i+1$个序列首元素为$y$,定义其连接收益为$|x-y|*i$,求$n$个序列连接最大 ...
- POJ 1160:Post Office 邮局经典DP
Post Office Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 17168 Accepted: 9270 Desc ...
随机推荐
- 轻量级的中文分词工具包 - IK Analyzer
IK Analyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包.从2006年12月推出1.0版开始, IKAnalyzer已经推出了4个大版本.最初,它是以开源项目Luence为应用 ...
- JSP 核心 (等待更新)
开篇:JSP的等同于servlet 编译器将其转化为.class,后执行.一旦配置在Tomcat webapps,运行访问后,在Tomcat--->work文件内出现java文件,其内容即为转化 ...
- Visual C++基础知识(win32exe)
1.Visual C++简称VC或者VC++ 是一个集成开发环境(编辑器+调试器+编译器) gcc---Linux和Unix的C++编译器 Vc----Windows的C++编译器 2.MFC(Mic ...
- Funny String
def main(): t = int(raw_input()) for _ in xrange(t): s = raw_input().strip() s_len = len(s) is_funny ...
- VS2010的调试参数/Zi /DEBUG
/DEBUG只是是否要生成调试信息的开关.这个命令行选项在链接器页面那里 /Zi只是生成的调试信息的格式,这个格式是.pdb文件.当然还有好几种格式.这个命令行在编译页那里 如果上面的选项没有设置对, ...
- UML--核心视图之用例图
如果说UML是一门语言,那么元素就是UML的基本词汇,视图就是语法. UML通过视图将基本元素组织在一起,形成有意义的句子. 静态视图,顾名思义,就是表达静态事物的.包括用例图.类图和包图. 用例图 ...
- mongodb----修改器
$inc:增加或者减少指定键值,如果键不存在,就创建一个键. $set:指定一个健的值,如果键不存在,就创建一个键. $unset:删除指定的键. $push:向指定的数组末尾加添加一个元素,如果数组 ...
- IO队列和IO调度
IO体系概览 先看看本文主题IO调度和IO队列处于整个IO体系的哪个位置,这个IO体系是非常重要的,了解IO体系我们可以对整个IO过程有个全面的认识.虽然一下两下并不清楚IO体系各个部分的细节,但是我 ...
- qt模型学习
# -*- coding: utf-8 -*- # python:2.x __author__ = 'Administrator' from PyQt4.Qt import * from PyQt4. ...
- JSP错题纠错
A:判断学员是否手动安装过Tomcat(练习熟练度) B:使学员了解Tomcat的运行过程 ,浏览器向Web服务器发送请求,Web站点处理请求后,把处理后的结果响应给浏览器 C:Tomcat作为Web ...