题目链接

求sigma(i : 1 to n)i^k。

为了做这个题这两天真是补了不少数论, 之前连乘法逆元都不知道...

关于拉格朗日插值法, 我是看的这里http://www.guokr.com/post/456777/, 还挺有趣...

根据题目给出的例子我们可以发现, k次方的通项公式的最高次是k+1次, 根据拉格朗日插值法, 构建一个k+1次的方程需要k+2项。

然后公式是  , 对于这个题, p[i]就是i^k+(i-1)^k+(i-2)^k+.....+1^k, 这部分可以预处理出来。 自己不会搞公式 , 从http://www.cnblogs.com/qscqesze/p/5207132.html这里盗的(雾

我们发现上面就是(n-1)*(n-2)......*(n-k-2)/(n-i), 上面的那部分预处理出来, 除(n-i)相当于乘(n-i)的乘法逆元。

下面那部分就是(i-1)*(i-2)*...(i-i+1)     *   (i-i-1)*(i-i-2)*......(i-k-2), 相当于两个阶乘相乘, 阶乘预处理出来, 然后注意一下后面的正负号就可以了。

#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const ll mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
const int maxn = 1e6+;
ll f[maxn], fac[maxn];
ll pow(ll a, ll b) {
ll ret = ;
while(b) {
if(b&)
ret = (ret*a)%mod;
a = (a*a)%mod;
b>>=;
}
return ret;
}
int main()
{
ll n, k;
cin>>n>>k;
for(int i = ; i<=k+; i++) {
f[i] = (f[i-]+pow(i*1LL, k))%mod;
}
fac[] = ;
for(int i = ; i<maxn; i++) {
fac[i] = (fac[i-]*i)%mod;
}
if(n<=k+) {
cout<<f[n]<<endl;
return ;
}
ll cur = , ans = ;
for(int i = ; i<=k+; i++) {
cur = (cur*(n-i))%mod;
}
for(int i = ; i<=k+; i++) {
ll tmp = pow(n-i, mod-)%mod;
ll tmp1 = pow(fac[i-]%mod*fac[k+-i]%mod, mod-)%mod;
int sign = (k+-i)%?-:;
ans = (ans + sign*tmp*tmp1%mod*f[i]%mod*cur%mod)%mod;
}
ans = (ans+mod)%mod;
cout<<ans<<endl;
return ;
}

codeforces 622F. The Sum of the k-th Powers 拉格朗日插值法的更多相关文章

  1. Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法

    F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...

  2. Codeforces 622F The Sum of the k-th Powers

    Discription There are well-known formulas: , , . Also mathematicians found similar formulas for high ...

  3. Codeforces 622F The Sum of the k-th Powers(数论)

    题目链接 The Sum of the k-th Powers 其实我也不懂为什么这么做的……看了无数题解觉得好厉害哇…… #include <bits/stdc++.h> using n ...

  4. Codeforces 622F The Sum of the k-th Powers ( 自然数幂和、拉格朗日插值法 )

    题目链接 题意 : 就是让你求个自然数幂和.最高次可达 1e6 .求和上限是 1e9 分析 :  题目给出了最高次 k = 1.2.3 时候的自然数幂和求和公式 可以发现求和公式的最高次都是 k+1 ...

  5. 【CF622F】The Sum of the k-th Powers (拉格朗日插值法)

    用的dls的板子,因为看不懂调了好久...果然用别人的板子就是这么蛋疼- -|| num数组0~k+1储存了k+2个值,且这k+2个值是自然数i的k次方而不是次方和,dls的板子自己帮你算和的...搞 ...

  6. Codeforces D. The Sum of the k-th Powers(拉格朗日插值)

    题目描述: The Sum of the k-th Powers time limit per test 2 seconds memory limit per test 256 megabytes i ...

  7. Codeforces 396B On Sum of Fractions 数论

    题目链接:Codeforces 396B On Sum of Fractions 题解来自:http://blog.csdn.net/keshuai19940722/article/details/2 ...

  8. codeforces 963A Alternating Sum

    codeforces 963A Alternating Sum 题解 计算前 \(k\) 项的和,每 \(k\) 项的和是一个长度为 \((n+1)/k\) ,公比为 \((a^{-1}b)^k\) ...

  9. Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值

    The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...

随机推荐

  1. Address already in use: JVM_Bind <null>:8080

    解决方法: 1重开eclipse,端口号被占用,或者杀掉进程

  2. Java实现串口通信的小样例

    用Java实现串口通信(windows系统下),须要用到sun提供的串口包 javacomm20-win32.zip.当中要用到三个文件,配置例如以下: 1.comm.jar放置到 JAVA_HOME ...

  3. USB OTG简单介绍

    1 引言 随着USB2.0版本号的公布,USB越来越流行,已经成为一种标准接口.如今,USB支持三种传输速率:低速(1.5Mb/s).全速(12Mb/s)和快速(480Mb/s),四种传输类型:块传输 ...

  4. 达内TTS6.0课件oop_day01

  5. hbase 单机安装问题

    报zookeeper exception not found I fixed this by editing the file "/usr/local/hbase-0.94.1/conf/h ...

  6. Mac之vim普通命令使用

    Mac之vim普通命令使用 标签: vim命令 高级一些的编辑器,都会包含宏功能,vim当然不能缺少了,在vim中使用宏是非常方便的: :qx 开始记录宏,并将结果存入寄存器x q 退出记录模式 @x ...

  7. .NET软件开发与常用工具清单

    [工欲善其事,必先利其器]软件开发的第一步就是选择高效.智能的工具. 下面列出的工具软件能辅助提高工作效率.  开发类工具 微软.Net平台下的集成开发环境:Visual Studio. Visual ...

  8. 提供一段Excel获取Title的标题,类似于A、AA、AAA,我们操作Excel的时候通常根据次标题来获取一定的操作范围。

    /******************************************** FormatExcelColumTitle Purpose Get excel title like &qu ...

  9. mybaitis配置信息

    在配置mybatis当中,jdbcType的名称要大写,时间类型DATE只能传入年月日,要想传入时分秒,应该使用TIMESTAMP http://www.blogjava.net/hello-yun/ ...

  10. (4)事件处理——(2)在页面加载的时候执行任务(Performing tasks on page load)

    We have already seen how to make jQuery react to the loading of a web page. The $(document).ready()e ...