这一周的作业,刚压线写完。Problem3 没有写,不想证明了。从Problem 9 开始一直到最后难度都挺大的,我是在论坛上看过了别人的讨论才写出来的,挣扎了很久。

Problem 9在给定的基上分解向量,里面调用了hw4的一些函数,通过solve函数获得矩阵方程的解

Problem 10判断矩阵是不是可逆的,注意判断矩阵是不是square的

Problem 11和Problem 12 都是求逆,也是解方程,只是函数的参数需要参考一下源码

发现一个有趣的事情,Coding the Matrix的论坛上有个老头胡子都白了也在学这个课程,好励志的感觉,不过人家貌似是教授来着。

# version code 941
# Please fill out this stencil and submit using the provided submission script. from vecutil import list2vec
from solver import solve
from matutil import *
from mat import Mat
from GF2 import one
from vec import Vec
from independence import *
from triangular import *
from hw4 import * ## Problem 1
w0 = list2vec([1,0,0])
w1 = list2vec([0,1,0])
w2 = list2vec([0,0,1]) v0 = list2vec([1,2,3])
v1 = list2vec([1,3,3])
v2 = list2vec([0,3,3]) # Fill in exchange_S1 and exchange_S2
# with appropriate lists of 3 vectors exchange_S0 = [w0,w1,w2]
exchange_S1 = [v0,w1,w2]
exchange_S2 = [v0,v1,w2]
exchange_S3 = [v0,v1,v2] ## Problem 2
w0 = list2vec([0,one,0])
w1 = list2vec([0,0,one])
w2 = list2vec([one,one,one]) v0 = list2vec([one,0,one])
v1 = list2vec([one,0,0])
v2 = list2vec([one,one,0]) exchange_2_S0 = [w0, w1, w2]
exchange_2_S1 = [w0,w1,v1]
exchange_2_S2 = [w0,v0,v1]
exchange_2_S3 = [v0, v1, v2] ## Problem 3
def morph(S, B):
'''
Input:
- S: a list of distinct Vec instances
- B: a list of linearly independent Vec instances
- Span S == Span B
Output: a list of pairs of vectors to inject and eject
Example:
>>> #This is how our morph works. Yours may yield different results.
>>> S = [list2vec(v) for v in [[1,0,0],[0,1,0],[0,0,1]]]
>>> B = [list2vec(v) for v in [[1,1,0],[0,1,1],[1,0,1]]]
>>> morph(S, B)
[(Vec({0, 1, 2},{0: 1, 1: 1, 2: 0}), Vec({0, 1, 2},{0: 1, 1: 0, 2: 0})), (Vec({0, 1, 2},{0: 0, 1: 1, 2: 1}), Vec({0, 1, 2},{0: 0, 1: 1, 2: 0})), (Vec({0, 1, 2},{0: 1, 1: 0, 2: 1}), Vec({0, 1, 2},{0: 0, 1: 0, 2: 1}))] '''
pass ## Problem 4
# Please express each solution as a list of vectors (Vec instances) row_space_1 = [list2vec([1,2,0]),list2vec([0,2,1])]
col_space_1 = [list2vec([1,0]),list2vec([0,1])] row_space_2 = [list2vec([1,4,0,0]),list2vec([0,2,2,0]),list2vec([0,0,1,1])]
col_space_2 = [list2vec([1,0,0]),list2vec([4,2,0]),list2vec([0,0,1])] row_space_3 = [list2vec([1])]
col_space_3 = [list2vec([1,2,3])] row_space_4 = [list2vec([1,0]),list2vec([2,1])]
col_space_4 = [list2vec([1,2,3]),list2vec([0,1,4])] ## Problem 5
def my_is_independent(L):
'''
input: A list, L, of Vecs
output: A boolean indicating if the list is linearly independent >>> L = [Vec({0, 1, 2},{0: 1, 1: 0, 2: 0}), Vec({0, 1, 2},{0: 0, 1: 1, 2: 0}), Vec({0, 1, 2},{0: 0, 1: 0, 2: 1}), Vec({0, 1, 2},{0: 1, 1: 1, 2: 1}), Vec({0, 1, 2},{0: 1, 1: 1, 2: 0}), Vec({0, 1, 2},{0: 0, 1: 1, 2: 1})]
>>> my_is_independent(L)
False
>>> my_is_independent(L[:2])
True
>>> my_is_independent(L[:3])
True
>>> my_is_independent(L[1:4])
True
>>> my_is_independent(L[0:4])
False
>>> my_is_independent(L[2:])
False
>>> my_is_independent(L[2:5])
False
'''
if rank(L)==len(L):return True
else:return False ## Problem 6
def subset_basis(T):
'''
input: A list, T, of Vecs
output: A list, S, containing Vecs from T, that is a basis for the
space spanned by T. >>> a0 = Vec({'a','b','c','d'}, {'a':1})
>>> a1 = Vec({'a','b','c','d'}, {'b':1})
>>> a2 = Vec({'a','b','c','d'}, {'c':1})
>>> a3 = Vec({'a','b','c','d'}, {'a':1,'c':3})
>>> subset_basis([a0,a1,a2,a3]) == [Vec({'c', 'b', 'a', 'd'},{'a': 1}), Vec({'c', 'b', 'a', 'd'},{'b': 1}), Vec({'c', 'b', 'a', 'd'},{'c': 1})]
True
'''
r=[]
for x in T:
r.append(x)
#print(x)
if my_is_independent(r)==False:r.remove(x)
#print(r)
return r ## Problem 7
def my_rank(L):
'''
input: A list, L, of Vecs
output: The rank of the list of Vecs >>> my_rank([list2vec(v) for v in [[1,2,3],[4,5,6],[1.1,1.1,1.1]]])
2
'''
return len(subset_basis(L)) ## Problem 8
# Please give each answer as a boolean only_share_the_zero_vector_1 = True
only_share_the_zero_vector_2 = True
only_share_the_zero_vector_3 = True ## Problem 9
def direct_sum_decompose(U_basis, V_basis, w):
'''
input: A list of Vecs, U_basis, containing a basis for a vector space, U.
A list of Vecs, V_basis, containing a basis for a vector space, V.
A Vec, w, that belongs to the direct sum of these spaces.
output: A pair, (u, v), such that u+v=w and u is an element of U and
v is an element of V. >>> U_basis = [Vec({0, 1, 2, 3, 4, 5},{0: 2, 1: 1, 2: 0, 3: 0, 4: 6, 5: 0}), Vec({0, 1, 2, 3, 4, 5},{0: 11, 1: 5, 2: 0, 3: 0, 4: 1, 5: 0}), Vec({0, 1, 2, 3, 4, 5},{0: 3, 1: 1.5, 2: 0, 3: 0, 4: 7.5, 5: 0})]
>>> V_basis = [Vec({0, 1, 2, 3, 4, 5},{0: 0, 1: 0, 2: 7, 3: 0, 4: 0, 5: 1}), Vec({0, 1, 2, 3, 4, 5},{0: 0, 1: 0, 2: 15, 3: 0, 4: 0, 5: 2})]
>>> w = Vec({0, 1, 2, 3, 4, 5},{0: 2, 1: 5, 2: 0, 3: 0, 4: 1, 5: 0})
>>> direct_sum_decompose(U_basis, V_basis, w) == (Vec({0, 1, 2, 3, 4, 5},{0: 2.0, 1: 4.999999999999972, 2: 0.0, 3: 0.0, 4: 1.0, 5: 0.0}), Vec({0, 1, 2, 3, 4, 5},{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0, 5: 0.0}))
True
'''
T=U_basis + V_basis
x=vec2rep(T,w)
#print(T,w,x)
rep=list(x.f.values())
u1=list2vec(rep[0:len(U_basis)])
v1=list2vec(rep[len(U_basis):len(T)])
u=rep2vec(u1,U_basis)
v=rep2vec(v1,V_basis)
return (u,v) ## Problem 10
def is_invertible(M):
'''
input: A matrix, M
outpit: A boolean indicating if M is invertible. >>> M = Mat(({0, 1, 2, 3}, {0, 1, 2, 3}), {(0, 1): 0, (1, 2): 1, (3, 2): 0, (0, 0): 1, (3, 3): 4, (3, 0): 0, (3, 1): 0, (1, 1): 2, (2, 1): 0, (0, 2): 1, (2, 0): 0, (1, 3): 0, (2, 3): 1, (2, 2): 3, (1, 0): 0, (0, 3): 0})
>>> is_invertible(M)
True
'''
L=mat2coldict(M)
L=list(L.values())
if len(L)!=len(L[0].D):return False
else:return rank(L)==len(L) ## Problem 11
def find_matrix_inverse(A):
'''
input: An invertible matrix, A, over GF(2)
output: Inverse of A >>> M = Mat(({0, 1, 2}, {0, 1, 2}), {(0, 1): one, (1, 2): 0, (0, 0): 0, (2, 0): 0, (1, 0): one, (2, 2): one, (0, 2): 0, (2, 1): 0, (1, 1): 0})
>>> find_matrix_inverse(M) == Mat(({0, 1, 2}, {0, 1, 2}), {(0, 1): one, (2, 0): 0, (0, 0): 0, (2, 2): one, (1, 0): one, (1, 2): 0, (1, 1): 0, (2, 1): 0, (0, 2): 0})
True
'''
B=[]
for i in range(len(A.D[0])):
b=Vec(A.D[0],{})
b[i]=one
t=solve(A,b)
B.append(t)
B=coldict2mat(B)
return B ## Problem 12
def find_triangular_matrix_inverse(A):
'''
input: An upper triangular Mat, A, with nonzero diagonal elements
output: Inverse of A
>>> A = listlist2mat([[1, .5, .2, 4],[0, 1, .3, .9],[0,0,1,.1],[0,0,0,1]])
>>> find_triangular_matrix_inverse(A) == Mat(({0, 1, 2, 3}, {0, 1, 2, 3}), {(0, 1): -0.5, (1, 2): -0.3, (3, 2): 0.0, (0, 0): 1.0, (3, 3): 1.0, (3, 0): 0.0, (3, 1): 0.0, (2, 1): 0.0, (0, 2): -0.05000000000000002, (2, 0): 0.0, (1, 3): -0.87, (2, 3): -0.1, (2, 2): 1.0, (1, 0): 0.0, (0, 3): -3.545, (1, 1): 1.0})
True
'''
B=[]
C=mat2rowdict(A)
for i in range(len(A.D[0])):
b=Vec(A.D[0],{})
b[i]=1
t=triangular_solve(C,range(len(C)),b)
B.append(t)
B=coldict2mat(B)
return B

【Python】Coding the Matrix:Week 5: Dimension Homework 5的更多相关文章

  1. 【Python】Coding the Matrix:Week 5 Perspective Lab

    这个Lab的内容光是说明就有7页之巨,我反复看了很久才看懂一点点,Lab主要完成的是从不同坐标系表示之间变换的方法. 原始的图片,从Camera basis的表示转换成WhiteBoard basis ...

  2. 【python】SQLAlchemy

    来源:廖雪峰 对比:[python]在python中调用mysql 注意连接数据库方式和数据操作方式! 今天发现了个处理数据库的好东西:SQLAlchemy 一般python处理mysql之类的数据库 ...

  3. 【Python】内置数据类型

    参考资料: http://sebug.net/paper/books/dive-into-python3/native-datatypes.html http://blog.csdn.net/hazi ...

  4. 【Python】 零碎知识积累 II

    [Python] 零碎知识积累 II ■ 函数的参数默认值在函数定义时确定并保存在内存中,调用函数时不会在内存中新开辟一块空间然后用参数默认值重新赋值,而是单纯地引用这个参数原来的地址.这就带来了一个 ...

  5. 【Python】【BugList12】python自带IDLE执行print(req.text)报错:UnicodeEncodeError: 'UCS-2' codec can't encode characters in position 93204-93204

    [代码] # -*- coding:UTF-8 -*- import requests if __name__ == '__main__': target = 'https://unsplash.co ...

  6. 【Python】【内置函数】

    [fromkeys()] -- coding: utf-8 -- python 27 xiaodeng python之函数用法fromkeys() fromkeys() 说明:用于创建一个新字典,以序 ...

  7. 【Python】-NO.98.Note.3.Python -【Python3 解释器、运算符】

    1.0.0 Summary Tittle:[Python]-NO.98.Note.3.Python -[Python3 解释器] Style:Python Series:Python Since:20 ...

  8. 【Python】【容器 | 迭代对象 | 迭代器 | 生成器 | 生成器表达式 | 协程 | 期物 | 任务】

    Python 的 asyncio 类似于 C++ 的 Boost.Asio. 所谓「异步 IO」,就是你发起一个 IO 操作,却不用等它结束,你可以继续做其他事情,当它结束时,你会得到通知. Asyn ...

  9. 【Python】无须numpy,利用map函数与zip(*)函数对数组转置(转)

    http://blog.csdn.net/yongh701/article/details/50283689 在Python的numpy中,对类似array=[[1,2,3],[4,5,6],[7,8 ...

随机推荐

  1. 文本去重之SimHash算法

    文本去重之SimHash算法 - pathenon的个人页面 - 开源中国社区 文本去重之SimHash算法

  2. linux驱动面试题2

    1.什么是GPIO? general purpose input/output GPIO是相对于芯片本身而言的,如某个管脚是芯片的GPIO脚,则该脚可作为输入或输出高或低电平使用,当然某个脚具有复用的 ...

  3. 第06讲- DDMS中logcat的使用

    1.DDMS使用 )Device选项卡 Device中罗列了Emulator中所有的进程,选项卡右上角那一排按钮分别为:调试进程.更新进程.更新进程堆栈信息.停止某个进程. )Threads选项卡   ...

  4. hdu 4007 Dave(线性探查+枚举)

    Problem Description Recently, Dave is boring, so he often walks around. He finds that some places ar ...

  5. H Language Blueprint

    H Language Blueprint I will design the H language in the very-soon future, it will be like: 1- a scr ...

  6. [转]轻量级 Java Web 框架架构设计

    工作闲暇之余,我想设计并开发一款轻量级 Java Web 框架,看看能否取代目前最为流行的而又越来越重的 Spring.Hibernate 等框架.请原谅在下的大胆行为与不自量力,本人不是为了重造轮子 ...

  7. [AngualrJS] Using Angular-Cache for caching http request

    Check the website: https://jmdobry.github.io/angular-cache/#using-angular-cache-with-http Install: n ...

  8. Win7 公布网站 HTTP 错误 404.4 - Not Found

     NET IIS7.5 创建网站时,假设发现下面错误,而且 默认网站訪问没有问题的话, 能够尝试,进入 处理程序映射 右键恢复为父级,有可能会有意想不到的 惊喜. 我的问题就是这样解决的. 出现这 ...

  9. hdu 5071 Chat(模拟|Splay)

    Chat Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Sub ...

  10. 一些基础的.net用法

    一.using 用法 using 别名设置 using 别名 = System.web 当两个不同的namespace里有同名的class时.可以用 using aclass = namespace1 ...