Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.[1] It is a density-based clustering algorithm: given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN is one of the most common clustering algorithms and also most cited in scientific literature.[2]

In 2014, the algorithm was awarded the test of time award (an award given to algorithms which have received substantial attention in theory and practice) at the leading data mining conference, KDD.[3]

Contents
1 Preliminary
2 Algorithm
3 Complexity
4 Advantages
5 Disadvantages
6 Parameter estimation
7 Extensions
8 Availability
9 See also
10 Notes
11 References
11.1 Further readin

Preliminary

Consider a set of points in some space to be clustered. For the purpose of DBSCAN clustering, the points are classified as core points, (density-)reachable points and outliers, as follows:

A point p is a core point if at least minPts points are within distance ε(ε is the maximum radius of the neighborhood from p) of it (including p). Those points are said to be directly reachable from p. By definition, no points are directly reachable from a non-core point.
A point q is reachable from p if there is a path p1, ..., pn with p1 = p and pn = q, where each pi+1 is directly reachable from pi (all the points on the path must be core points, with the possible exception of q).
All points not reachable from any other point are outliers.
Now if p is a core point, then it forms a cluster together with all points (core or non-core) that are reachable from it. Each cluster contains at least one core point; non-core points can be part of a cluster, but they form its "edge", since they cannot be used to reach more points.

wiki: https://en.wikipedia.org/wiki/DBSCAN

DBSCAN(Density-based spatial clustering of applications with noise)的更多相关文章

  1. [Scikit-learn] *2.3 Clustering - DBSCAN: Density-Based Spatial Clustering of Applications with Noise

    http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN ...

  2. Direction of Arrival Based Spatial Covariance Model for Blind Sound Source Separation

    基于信号协方差模型DOA的盲声源分离[1]. 在此基础上,作者团队于2018年又发布了一篇文章,采用分级和时间差的空间协方差模型及非负矩阵分解的多通道盲声源分离[2]. 摘要 本文通过对短时傅立叶变换 ...

  3. 数据挖掘--DBSCAN

    DBSCAN:Density Based Spatial Clustering of Applications with Noise Basic idea: If an object p is den ...

  4. 顶尖数据挖掘辅助教学套件(TipDM-T6)产品白皮书

          顶尖数据挖掘辅助教学套件 (TipDM-T6)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: ht ...

  5. 顶尖大数据挖掘实战平台(TipDM-H8)产品白皮书

        顶尖大数据挖掘实战平台 (TipDM-H8)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: http: ...

  6. 【转】常用聚类算法(一) DBSCAN算法

    原文链接:http://www.cnblogs.com/chaosimple/p/3164775.html#undefined 1.DBSCAN简介 DBSCAN(Density-Based Spat ...

  7. 常用聚类算法(一) DBSCAN算法

    1.DBSCAN简介 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度 ...

  8. 挑子学习笔记:DBSCAN算法的python实现

    转载请标明出处:https://www.cnblogs.com/tiaozistudy/p/dbscan_algorithm.html DBSCAN(Density-Based Spatial Clu ...

  9. 【原创】大叔算法分享(5)聚类算法DBSCAN

    一 简介 DBSCAN:Density-based spatial clustering of applications with noise is a data clustering algorit ...

随机推荐

  1. sybase用户管理(创建、授权、删除)

    一.登录用户管理:1.创建用户:sp_addlogin loginame, passwd [, defdb] [, deflanguage] [, fullname] [, passwdexp] [, ...

  2. [KMP求最小循环节][HDU3746][Cyclic Nacklace]

    题意 给你个字符串,问在字符串末尾还要添加几个字符,使得字符串循环2次以上. 解法 无论这个串是不是循环串 i-next[i] 都能求出它的最小循环节 代码: /* 思路:kmp+字符串的最小循环节问 ...

  3. hdu1106 字符串水题strtok()&&strchr()&&sscanf()+atoi()使用

    字符串的题目 用库函数往往能大大简化代码量 以hdu1106为例 函数介绍 strtok() 原型: char *strtok(char s[], const char *delim); 功能: 分解 ...

  4. SQL Server 2008 修改表名

     有一张表  修改起 if exists (select * from sys.objects where object_id = object_id(N'Table_1') and type in ...

  5. 去掉firefox点击按钮时的虚线边框

    去掉火狐里面点击按钮时候的虚线边框 button::-moz-focus-inner, input[type="reset"]::-moz-focus-inner, input[t ...

  6. SQL Server数据库远程操作

    SQL Server数据库远程操作中,在使用openrowset/opendatasource前首先要启用Ad Hoc Distributed Queries服务,因为这个服务不安全所以SqlServ ...

  7. discuz二次开发笔记(三)------discuz的安装步骤

    下载好discuz的安装包后,解压在自己定义的文件夹里面,将upload里面的文件拷贝出来放到和upload同级的地方,然后删除upload文件夹. 打开浏览器,输入你文件夹的地址:如:http:// ...

  8. JSP中Filter中访问Spring管理的beans

    @Override public void init(FilterConfig filterConfig) {  //unchecked = filterConfig.getInitParameter ...

  9. Listview注意事项

    1.缓存 @Override public View getView(int position, View convertView, ViewGroup parent) { ViewHolder ho ...

  10. 图片异步加载 ,KVO

    图片异步下载类目: .h #import <UIKit/UIKit.h> typedef void (^ImageBlock)(UIImage *img); @interface UIIm ...