Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.[1] It is a density-based clustering algorithm: given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN is one of the most common clustering algorithms and also most cited in scientific literature.[2]

In 2014, the algorithm was awarded the test of time award (an award given to algorithms which have received substantial attention in theory and practice) at the leading data mining conference, KDD.[3]

Contents
1 Preliminary
2 Algorithm
3 Complexity
4 Advantages
5 Disadvantages
6 Parameter estimation
7 Extensions
8 Availability
9 See also
10 Notes
11 References
11.1 Further readin

Preliminary

Consider a set of points in some space to be clustered. For the purpose of DBSCAN clustering, the points are classified as core points, (density-)reachable points and outliers, as follows:

A point p is a core point if at least minPts points are within distance ε(ε is the maximum radius of the neighborhood from p) of it (including p). Those points are said to be directly reachable from p. By definition, no points are directly reachable from a non-core point.
A point q is reachable from p if there is a path p1, ..., pn with p1 = p and pn = q, where each pi+1 is directly reachable from pi (all the points on the path must be core points, with the possible exception of q).
All points not reachable from any other point are outliers.
Now if p is a core point, then it forms a cluster together with all points (core or non-core) that are reachable from it. Each cluster contains at least one core point; non-core points can be part of a cluster, but they form its "edge", since they cannot be used to reach more points.

wiki: https://en.wikipedia.org/wiki/DBSCAN

DBSCAN(Density-based spatial clustering of applications with noise)的更多相关文章

  1. [Scikit-learn] *2.3 Clustering - DBSCAN: Density-Based Spatial Clustering of Applications with Noise

    http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN ...

  2. Direction of Arrival Based Spatial Covariance Model for Blind Sound Source Separation

    基于信号协方差模型DOA的盲声源分离[1]. 在此基础上,作者团队于2018年又发布了一篇文章,采用分级和时间差的空间协方差模型及非负矩阵分解的多通道盲声源分离[2]. 摘要 本文通过对短时傅立叶变换 ...

  3. 数据挖掘--DBSCAN

    DBSCAN:Density Based Spatial Clustering of Applications with Noise Basic idea: If an object p is den ...

  4. 顶尖数据挖掘辅助教学套件(TipDM-T6)产品白皮书

          顶尖数据挖掘辅助教学套件 (TipDM-T6)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: ht ...

  5. 顶尖大数据挖掘实战平台(TipDM-H8)产品白皮书

        顶尖大数据挖掘实战平台 (TipDM-H8)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: http: ...

  6. 【转】常用聚类算法(一) DBSCAN算法

    原文链接:http://www.cnblogs.com/chaosimple/p/3164775.html#undefined 1.DBSCAN简介 DBSCAN(Density-Based Spat ...

  7. 常用聚类算法(一) DBSCAN算法

    1.DBSCAN简介 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度 ...

  8. 挑子学习笔记:DBSCAN算法的python实现

    转载请标明出处:https://www.cnblogs.com/tiaozistudy/p/dbscan_algorithm.html DBSCAN(Density-Based Spatial Clu ...

  9. 【原创】大叔算法分享(5)聚类算法DBSCAN

    一 简介 DBSCAN:Density-based spatial clustering of applications with noise is a data clustering algorit ...

随机推荐

  1. linux系统如何限制远程登录ip

    在Linux系统上限制远程登录的IP,使用系统自带的配置文件. /etc/hosts.allow /etc/hosts.deny 匹配原则  先allow 后deny. 要求: 只允许 192.168 ...

  2. asp.net关于Repeater控件中的全选,批量操作

    今天在Repeater控件中碰到一个全选的操作,于是上网查了一下,找到一个觉得比较好,便记录下来, 界面代码简化之后(全选操作): <script type="text/javascr ...

  3. DEVC++生成DLL的方法

    通过网上一个MD5加密算法源码生成DLL 一.建立DLL项目并编译 DEVC++创建C项目,选择DLL, 一共4个文件及源码如下: dll.h dllmain.c md5.c md5.h 函数参数: ...

  4. WindowsForm 打印

    打印: 打印对话框:printdialog 页面设置:pagesetupdialog 这两个对话框都需要通过设置printdocument来指定打印对象 printdocument:打印对象,必须要有 ...

  5. MyEclipse开发的java web项目在 Eclipse中无法识别

    不能识别项目解决办法 在eclipse下,右键项目properties   ->  project fac e ts 选中 Dynamic web module 选择后面的版本为 2.5(运行环 ...

  6. HtmlParser基础教程

    1.相关资料 官方文档:http://htmlparser.sourceforge.net/samples.html API:http://htmlparser.sourceforge.net/jav ...

  7. Fragment之三:根据屏幕尺寸加载不同的Fragment

    Fragment一个重要的作用在于根据屏幕的尺寸或者方向加载不同的布局. 未完待续

  8. 新测 thinkphp3.2 整合 PHPMailer 发送邮件

    PHPMailer 的官方网站:http://phpmailer.worxware.com/ PHPMailer 最新类库下载地址:[点击下载] PHPMailer GitHub 下载地址:https ...

  9. 【测试技术】ant中的for循环用法

    有的时候,我们希望ant中也能类似脚本语言一样进行for循环,以实现一些重复性工作.由于ant核心包并未提供此功能,所以需要下载一个扩展包扔到ant的lib目录下去.详细步骤如下: 1.下载核心包:a ...

  10. 混合使用Azure LB和ILB访问相同web服务(2)

    那么现在开始,我们配置下两台WEB服务器的Internal Load  balancer: 打开Powershell,检查当前两台虚拟机的端点配置: Get-AzureVM  -ServiceName ...