Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.[1] It is a density-based clustering algorithm: given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN is one of the most common clustering algorithms and also most cited in scientific literature.[2]

In 2014, the algorithm was awarded the test of time award (an award given to algorithms which have received substantial attention in theory and practice) at the leading data mining conference, KDD.[3]

Contents
1 Preliminary
2 Algorithm
3 Complexity
4 Advantages
5 Disadvantages
6 Parameter estimation
7 Extensions
8 Availability
9 See also
10 Notes
11 References
11.1 Further readin

Preliminary

Consider a set of points in some space to be clustered. For the purpose of DBSCAN clustering, the points are classified as core points, (density-)reachable points and outliers, as follows:

A point p is a core point if at least minPts points are within distance ε(ε is the maximum radius of the neighborhood from p) of it (including p). Those points are said to be directly reachable from p. By definition, no points are directly reachable from a non-core point.
A point q is reachable from p if there is a path p1, ..., pn with p1 = p and pn = q, where each pi+1 is directly reachable from pi (all the points on the path must be core points, with the possible exception of q).
All points not reachable from any other point are outliers.
Now if p is a core point, then it forms a cluster together with all points (core or non-core) that are reachable from it. Each cluster contains at least one core point; non-core points can be part of a cluster, but they form its "edge", since they cannot be used to reach more points.

wiki: https://en.wikipedia.org/wiki/DBSCAN

DBSCAN(Density-based spatial clustering of applications with noise)的更多相关文章

  1. [Scikit-learn] *2.3 Clustering - DBSCAN: Density-Based Spatial Clustering of Applications with Noise

    http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN ...

  2. Direction of Arrival Based Spatial Covariance Model for Blind Sound Source Separation

    基于信号协方差模型DOA的盲声源分离[1]. 在此基础上,作者团队于2018年又发布了一篇文章,采用分级和时间差的空间协方差模型及非负矩阵分解的多通道盲声源分离[2]. 摘要 本文通过对短时傅立叶变换 ...

  3. 数据挖掘--DBSCAN

    DBSCAN:Density Based Spatial Clustering of Applications with Noise Basic idea: If an object p is den ...

  4. 顶尖数据挖掘辅助教学套件(TipDM-T6)产品白皮书

          顶尖数据挖掘辅助教学套件 (TipDM-T6)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: ht ...

  5. 顶尖大数据挖掘实战平台(TipDM-H8)产品白皮书

        顶尖大数据挖掘实战平台 (TipDM-H8)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: http: ...

  6. 【转】常用聚类算法(一) DBSCAN算法

    原文链接:http://www.cnblogs.com/chaosimple/p/3164775.html#undefined 1.DBSCAN简介 DBSCAN(Density-Based Spat ...

  7. 常用聚类算法(一) DBSCAN算法

    1.DBSCAN简介 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度 ...

  8. 挑子学习笔记:DBSCAN算法的python实现

    转载请标明出处:https://www.cnblogs.com/tiaozistudy/p/dbscan_algorithm.html DBSCAN(Density-Based Spatial Clu ...

  9. 【原创】大叔算法分享(5)聚类算法DBSCAN

    一 简介 DBSCAN:Density-based spatial clustering of applications with noise is a data clustering algorit ...

随机推荐

  1. LR实战之Discuz开源论坛——登录脚本检查点

    在开发Discuz登录脚本时,遇到的一个问题是怎么去验证虚拟用户真正的登录成功,当然,熟悉LoadRunner工具的人就会知道,在脚本中使用检查点,对,没错! 我们知道,LR检查点功能有两种:文本检查 ...

  2. Linux 下的 Nginx 反向代理配置.

    最近实践中遇到了需要利用 nginx 进行反向代理服务器请求的需求,以前没怎么碰触过,因此花了1个多小时,快速阅览了一下nginx官网在反向代理服务中给出的基本定义: 说实话,官网给予的定义是精准的, ...

  3. [KMP求最小循环节][HDU1358][Period]

    题意 求所有循环次数大于1的前缀 的最大循环次数和前缀位置 解法 直接用KMP求最小循环节 当满足i%(i-next[i])&&next[i]!=0 前缀循环次数大于1 最小循环节是i ...

  4. Tomcat 的三种(bio,nio.apr) 高级 Connector 运行模式

    tomcat的运行模式有3种.修改他们的运行模式.3种模式的运行是否成功,可以看他的启动控制台,或者启动日志.或者登录他们的默认页面http://localhost:8080/查看其中的服务器状态. ...

  5. jquery优化引发的思考

    无意间看到jquery优化的一个细节让我觉得不可思议记录一下.仅仅只是换个地方代码就能提高数倍的效率,带给我的不是个仅是个小技巧,而是一总编程思想,技术大牛往往是在细节上体现. 通过缓存最小化选择操作 ...

  6. ionic安装

    npm set registry http://registry.cnpmjs.org/ 设置淘宝镜像

  7. (转)Java字符串应用之密码加密与验证

    1.通过java.Security.MessageDigest的静态方法getInstance创建具有指定算法名称的信息摘要,参数为算法名,传入”MD5“则表示使用MD5算法    2.Message ...

  8. ASP.NET和PHP全面对比

    谁是速度之王? 刚刚在9月编程语言排行榜上取得历史性突破的PHP在Web开发领域最到的对手可能就是基于微软.NET技术的ASP.NET.近日,微软的 Joe Stagner在博客上发表了一系列文章比较 ...

  9. <转>java中静态方法和非静态方法的存储

    Java中非静态方法是否共用同一块内存? 将某 class 产生出一个 instance 之后,此 class 所有的 instance field 都会新增一份,那么所有的 instance met ...

  10. HDU 1051 - Rightmost Digit

    找循环 #include <iostream> #include <cmath> using namespace std; int t,m,p,q; long long n; ...