Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.[1] It is a density-based clustering algorithm: given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN is one of the most common clustering algorithms and also most cited in scientific literature.[2]

In 2014, the algorithm was awarded the test of time award (an award given to algorithms which have received substantial attention in theory and practice) at the leading data mining conference, KDD.[3]

Contents
1 Preliminary
2 Algorithm
3 Complexity
4 Advantages
5 Disadvantages
6 Parameter estimation
7 Extensions
8 Availability
9 See also
10 Notes
11 References
11.1 Further readin

Preliminary

Consider a set of points in some space to be clustered. For the purpose of DBSCAN clustering, the points are classified as core points, (density-)reachable points and outliers, as follows:

A point p is a core point if at least minPts points are within distance ε(ε is the maximum radius of the neighborhood from p) of it (including p). Those points are said to be directly reachable from p. By definition, no points are directly reachable from a non-core point.
A point q is reachable from p if there is a path p1, ..., pn with p1 = p and pn = q, where each pi+1 is directly reachable from pi (all the points on the path must be core points, with the possible exception of q).
All points not reachable from any other point are outliers.
Now if p is a core point, then it forms a cluster together with all points (core or non-core) that are reachable from it. Each cluster contains at least one core point; non-core points can be part of a cluster, but they form its "edge", since they cannot be used to reach more points.

wiki: https://en.wikipedia.org/wiki/DBSCAN

DBSCAN(Density-based spatial clustering of applications with noise)的更多相关文章

  1. [Scikit-learn] *2.3 Clustering - DBSCAN: Density-Based Spatial Clustering of Applications with Noise

    http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN ...

  2. Direction of Arrival Based Spatial Covariance Model for Blind Sound Source Separation

    基于信号协方差模型DOA的盲声源分离[1]. 在此基础上,作者团队于2018年又发布了一篇文章,采用分级和时间差的空间协方差模型及非负矩阵分解的多通道盲声源分离[2]. 摘要 本文通过对短时傅立叶变换 ...

  3. 数据挖掘--DBSCAN

    DBSCAN:Density Based Spatial Clustering of Applications with Noise Basic idea: If an object p is den ...

  4. 顶尖数据挖掘辅助教学套件(TipDM-T6)产品白皮书

          顶尖数据挖掘辅助教学套件 (TipDM-T6)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: ht ...

  5. 顶尖大数据挖掘实战平台(TipDM-H8)产品白皮书

        顶尖大数据挖掘实战平台 (TipDM-H8)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: http: ...

  6. 【转】常用聚类算法(一) DBSCAN算法

    原文链接:http://www.cnblogs.com/chaosimple/p/3164775.html#undefined 1.DBSCAN简介 DBSCAN(Density-Based Spat ...

  7. 常用聚类算法(一) DBSCAN算法

    1.DBSCAN简介 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度 ...

  8. 挑子学习笔记:DBSCAN算法的python实现

    转载请标明出处:https://www.cnblogs.com/tiaozistudy/p/dbscan_algorithm.html DBSCAN(Density-Based Spatial Clu ...

  9. 【原创】大叔算法分享(5)聚类算法DBSCAN

    一 简介 DBSCAN:Density-based spatial clustering of applications with noise is a data clustering algorit ...

随机推荐

  1. H5页面之iphone6的适配

    兼容iphone各版本机型最佳的方式就是自适应. 1.viewport 简单粗暴的方式: 1 <meta name="viewport" content="widt ...

  2. Unity sqlite学习笔记一

    1.SQLITE的常识 SQLite是一个开源免费的数据库,一般用于嵌入系统或者小规模的应用软件开发中,你可以像使用Access一样使用它. sqlite的主要优点:零配置(Zero Configur ...

  3. WIN7 Net Configuration Assistant打不开

     转自  http://www.cnblogs.com/caojie0432/archive/2013/07/30/3225230.html  作者:db_suploc 今天在安装oracle10g的 ...

  4. Spring整合Hibernate 一 - 注入SessionFactory

    Spring3 整合 Hibernate4 - 注入SessionFactory 版本: spring-framework-3.2.4.RELEASE hibernate-release-4.2.5. ...

  5. Javascript DOM编程艺术JS代码

    //com function addLoadEvent (func) { var oldonload = window.onload; if (typeof window.onload != 'fun ...

  6. error LNK2019: 无法解析的外部符号 "public:

    错误 1 error LNK2019: 无法解析的外部符号 "public: __thiscall test::test(void)" (??0test@@QAE@XZ),该符号在 ...

  7. Java集合框架:Set、List、Map等介绍

    目录 1.Java集合类基本概念 2.Java集合类架构层次关系 1.Java集合类基本概念 在编程中,常常需要集中存放多个数据.从传统意义上来讲,数组是我们一个很好的选择,前提是我们事先已经明确知道 ...

  8. oracle 序列

    查询序列值 select td_prodline_attr_seq.nextval from dual     查询用户建的所有序列 用户名 必须大写select SEQUENCE_OWNER,SEQ ...

  9. js 数组排除重复值(string)

    前提:数组中的元素类型为:string 在网上看了许多高大尚的文章,还是解决不了我的string arry 的问题,只能怪自己脑残了,上代码: <!DOCTYPE html> <ht ...

  10. JavaScript 字符串常用操作纪要

    JavaScript 字符串用于存储和处理文本.因此在编写 JS 代码之时她总如影随形,在你处理用户的输入数据的时候,在读取或设置 DOM 对象的属性时,在操作 Cookie 时,在转换各种不同 Da ...