.写测试代码:
zhouhh@zhouhh-home:~$ vi test.pyx
[python] view plaincopy
    def sayhello(char* str):
        if str == None:
            print 'hello world'
        else:
            print str  

.编译成C语言
zhouhh@zhouhh-home:~$ cython test.pyx
zhouhh@zhouhh-home:~$ ls test.c
test.c
test.c是由cython通过 test.pyx生成的。

. gcc编译成.o文件
直接执行gcc会出错,必须包含python目录。
zhouhh@zhouhh-home:~$ gcc  test.c
test.c::: error: Python.h: 没有该文件或目录
test.c::: error: structmember.h: 没有该文件或目录
test.c::: error: #error Python headers needed to compile C extensions, please install development version of Python.
...
zhouhh@zhouhh-home:~$ gcc -c -fPIC -I/usr/include/python2. test.c
-fPIC表示编译成共享库,-I后跟include的路径。

.生成共享库
zhouhh@zhouhh-home:~$ gcc -shared test.o -o test.so

.在python中引用共享库
zhouhh@zhouhh-home:~$ vi test.py
import test
test.sayhello('ni hao')

.执行
zhouhh@zhouhh-home:~$ python test.py
ni hao

.疑问:
不知怎么穿NULL指针给函数参数。

.参考:
http://www.cython.org/
http://blog.csdn.net/lanphaday/archive/2009/09/17/4561611.aspx
一种为Python写C扩展的方式,尝试一下。
参考文献:
    [r] 官方主页: http://www.cython.org/
    [r] Cython三分钟入门: http://blog.csdn.net/lanphaday/archive/2009/09/17/4561611.aspx
    [u] A quick Cython introduction: http://www.perrygeo.net/wordpress/?p=116 其实就是上文的原文
    [i] Cython's Documentation: http://docs.cython.org/ 看到"Extensioin types"

   基 本使用
Cython基于pyrex,但是拥有更多功能和优化。用来写Python的C扩展的,并生成有效的C代码。写出的文件扩展名是 ".pyx" ,已经可以算作一种语言了。
一个简单的加法函数( addtest.pyx ):
def addtest(a,b):
    cdef float c=a+b
    return c

编译和生成动态库:
cython addtest.pyx
gcc -c -fPIC -I/usr/include/python2. addtest.c
gcc -shared addtest.o -o addtest.so

使用:
$ python
>>> import addtest
>>> addtest(,)
3.0

构建Cython代码的方式:
    使用 setup.py ,常用
    使用pyximport导入 ".pyx" 文件
    运行cython命令编译出.c文件后再编译成.so文件
    使用Sage

使用 setup.py 方式,例如一个 hello.pyx 文件,编写的 setup.py 如下:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
ext_modules=[Extension('hello',['hello.pyx'])]
setup(
    name='Hello world app',
    cmdclass={'build_ext':build_ext},
    ext_modules=ext_modules
)

构建使用命令 python setup.py build_ext --inplace 。
Cython提高速度的主要原因是使用静态类型。可以在任何参数前直接使用C的类型定义。函数内的话要加"cdef"前缀。如:
def f(double x):
    cdef double ret
    ret=x**-x
    return ret

仅仅使用Cython编译纯Python代码可以提高35%的性能,几乎全部使用静态类型以后提高4倍。

C风格函数声明,"except? -2"表示返回-2时就是出错了。不过"except *"是肯定安全的。如:
cdef :
    -x
使用cpdef时,这个函数就可以同时被C和Python调用了。当使用了C函数时,因为避开了昂贵的函数调用,旺旺可以提高150倍的速度。
不要过度优化,一步步的优化并且查看profile。使用"cython -a"参数可以查看HTML报告。

   调 用其他C库
3.1   简 单例子
导入"math.h"中的 sin() 函数并使用:
cdef extern from "math.h":
    double sin(double)
cdef double f(double x):
    return sin(x*x)
Cython不会去扫描头文件,所以自己必须再声明一遍。下面是使用时必须连接上其他库的 setup.py 文件:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
ext_modules=[
    Extension('demo',['demo.pyx',],libraries=['m',])
    ]
setup(
    name='Demos',
    cmdclass={'build_ext':build_ext},
    ext_modules=ext_modules,
)
同理可以使用任何动态或静态编译的库。
3.2   重 新定义外部C库的定义
一段C代码,头文件中的类型定义与函数声明:
typedef struct _Queue Queue;
typedef void *QueueValue;

Queue *queue_new(void);
void queue_free(Queue *queue);

int queue_push_head(Queue *queue, QueueValue data);
QueueValue queue_pop_head(Queue *queue);
QueueValue queue_peek_head(Queue *queue);

int queue_push_tail(Queue *queue, QueueValue data);
QueueValue queue_pop_tail(Queue *queue);
QueueValue queue_peek_tail(Queue *queue);

int queue_is_empty(Queue *queue);

对应的Cython定义,写入一个".pxd"文件中:
cdef extern from "libcalg/queue.h":
    ctypedef struct Queue:
        pass
    ctypedef void* QueueValue

    Queue* new_queue()
    void queue_free(Queue* queue)

    int queue_push_head(Queue* queue, QueueValue data)
    QueueValue  queue_pop_head(Queue* queue)
    QueueValue queue_peek_head(Queue* queue)

    int queue_push_tail(Queue* queue, QueueValue data)
    QueueValue queue_pop_tail(Queue* queue)
    QueueValue queue_peek_tail(Queue* queue)

    bint queue_is_empty(Queue* queue)

大部分时候这种声明与头文件几乎是一样的,你可以直接拷贝过来。唯一的区别在最后一行,C函数的返回值其实是布尔值,所以用bint类型会转换成 Python的布尔值。
这里可以不关心结构体的内容,而只是用它的名字。

   类 定义
一个类的例子:
cimport cqueue
cimport python_exc

cdef class Queue:
    cdef cqueue.Queue_c_queue
    def __cinit__(self):
        self._c_queue=cqueue.new_queue()

这里的构造函数是 __cinit__() 而不是 __init__() 。虽然 __init__() 依然有效,但是并不确保一定会运行(比如子类忘了调用基类的构造函数)。因为未初始化的指针经常导致Python挂掉而没有任何提示,所以 __cinit__() 总是会在初始化时调用。不过其被调用时,对象尚未构造完成,所以除了cdef字段以外,避免其他操作。如果要给 __cinit__() 构造和函数加参数,必须与 __init__() 的匹配。

构造函数初始化资源时记得看看返回的资源是否是有效的。如果无效可以抛出错误。Cython提供了内存不足异常,如下:

def __cinit__(self):
    self._c_queue=cqueue.new_queue()
    if self._c_queue is NULL:
        python_exc.PyErr_NoMemory()

Cython提供的析构函数,仅在建立成功内部对象时释放内部对象:

def __dealloc__(self):
    if self._c_queue is not NULL:
        cqueue.queue_free(self._c_queue)

将数据以通用指针方式进入,和返回时的强制类型转换:
cdef append(self,int value):
    cqueue.queue_push_tail(self._c_queue,<void*>value)
cdef int pop(self):
    return <int>cqueue.queue_pop_head(self._c_queue)

Cython除了支持普通Python类以外,还支持扩展类型,使用"cdef class"定义。在内存占用和效率上更好。因为使用C结构体存储字段和方法,而不是Python字典。所以可以存储任意C字段类型,而不是其 Python包装。访问时也是直接访问C的值,而不是通过字典查找。

普通的Python类可以继承自cdef类,但是反之则不行。Cython需要知道完整的继承层次来定义C结构体,并且严格限制单继承。不过普通 Python类可以继承任一数量的Python类和扩展类型,无论在Python中还是在Cython代码中。

   与 Python交互
如果Cython调用Python函数失败,则直接返回NULL,而不是异常对象。
如果一个函数既有可能返回NULL,也有可能返回0,则处理起来就比较麻烦。Python C API的做法是 PyErr_Occurred() 函数。不过这种方式有性能损耗。在Cython中你可以自己指定哪个返回值代表错误,所以环境只要检查这个返回值即可。其他所有值都回无损耗的被接受。
在函数定义时指定except子句,则仅在函数返回该值时检查是否需要抛出异常。这样同一个函数返回0和返回0同时返回错误就可以区分开。例子:
cdef :
    #...
类中的 cdef 定义C方法,而 cpdef 可以同时定义C方法和Python方法
举个例子:
# hello.pyx
def say_hello_to(name):
print("Hello %s!" % name)

# setup.py
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [Extension("hello", ["hello.pyx"])]

setup(
name = 'Hello world app',
cmdclass = {'build_ext': build_ext},
ext_modules = ext_modules
)

在命令行里执行编译:
python setup.py build_ext --inplace

在Python里调用:
from hello import say_hello_to
say_hello_to(" world ")

cython教程的更多相关文章

  1. Cython:基础教程(1) 语法

    1 变量定义 http://docs.cython.org/src/reference/language_basics.html http://blog.csdn.net/i2cbus/article ...

  2. Cython: 快速入门

    1. Cython是什么? 它是一个用来快速生成Python扩展模块(extention module)的工具,语法是Python和c的混血.在Cython,C里的类型,如int,float,long ...

  3. Ubuntu16.04+cuda8.0rc+opencv3.1.0+caffe+Theano+torch7搭建教程

    https://blog.csdn.net/jywowaa/article/details/52263711 学习中用到深度学习的框架,需要搭建caffe.theano和torch框架.经过一个月的不 ...

  4. Python Kivy 中文教程:安装(Windows)

    Kivy 是一套用于跨平台快速应用开发的开源框架,只需编写一套代码,便可运行于各大桌面及移动平台上(包括 Linux, Windows, OS X, Android, iOS, 以及 Raspberr ...

  5. opencv-python教程学习系列9-程序性能检测及优化

    前言 opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍程序性能检测及优化,坚持学习,共同进步. 系列教程参照OpenCV-Python中文教程: 系统环 ...

  6. Ubuntu16.04+Cuda8.0+1080ti+caffe+免OpenCV3.2.0+faster-rCNN教程

    一.事先声明:1.Ubuntu版本:Ubuntu使用的是16.04.而不是16.04.1或16.04.2,这三个是有区别的.笔者曾有过这样的经历,Git上一个SLAM地图构建程序在Ubuntu14.0 ...

  7. Faster R-CNN教程

    Faster R-CNN教程 最后更新日期:2016年4月29日 本教程主要基于python版本的faster R-CNN,因为python layer的使用,这个版本会比matlab的版本速度慢10 ...

  8. mmdetection安装教程

    如果官方教程不行再参考我的吧,我的环境如下: ubuntu cuda10 cudnn7.5 步骤: 1.使用conda创建一个虚拟环境 conda create -n mmdetection pyth ...

  9. windows上安装Anaconda和python的教程详解

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

随机推荐

  1. Spring中注入List,Set,Map,Properties的xml文件配置方法

    下面的例子展示了如何注入 List – <list/> Set – <set/> Map – <map/> Properties – <props/> ...

  2. c++ build options(important)

    The C runtime library  4 versions: Multi-threaded (/MT) Multi-threaded Debug (/MTd) Multi-threaded D ...

  3. Linux 抓包

    tcpdump -i eth1 -s 0 -w eth1_2.log  tcp port 8893

  4. mysql中判断表中是否存在某条记录

    SELECT CASE WHEN EXISTS (SELECT * FROM usergroupmap WHERE groupId = groupIdIn AND userId = v_friendI ...

  5. css样式写一个三角形

    <style> .test{ border-color:transparent #abcdef transparent transparent; border-style:solid; b ...

  6. glib源码安装使用方法

    glib库是GTK+和GNOME工程的基础底层核心程序库,是一个综合用途的实用的轻量级的C程序库,它提供C语言的常用的数据结构的定义.相关的处理函数,有趣而实用的宏,可移植的封装和一些运行时机能,如事 ...

  7. 所有的GUI Toolkit,类型之多真开眼界

    The GUI Toolkit, Framework Page User interfaces occupy an important part of software development. Th ...

  8. 简单测试运行时类信息(RTTI),附详细例子

    新建一个单元文件,填写如下代码,然后保存为 ClassInfoUnit.pas,这里定义了一个结构,用来读取指定类的信息. unit ClassInfoUnit; interface uses Cla ...

  9. VIPS: a VIsion based Page Segmentation Algorithm

    VIPS: a VIsion based Page Segmentation Algorithm VIPS: a VIsion based Page Segmentation Algorithm In ...

  10. hdu 2421 Deciphering Password(约数个数问题)

    http://acm.hdu.edu.cn/showproblem.php?pid=2421 A^B 能够写成 p1^e1 * p2^e2 * .....*pk^ek.(A.B <= 10000 ...