Description

 
Student Ilya often skips his classes at the university. His friends criticize him for this, but they don’t know that Ilya spends this time not watching TV serials or listening to music. He creates a computer game of his dreams. The game’s world is a forest. There are elves, wooden houses, and a villain. And one can rob caravans there! Though there is only one caravan in the game so far, Ilya has hard time trying to implement the process of robbing.
The game world can be represented as several settlements connected by roads. It is possible to get from any settlement to any other by roads (possibly, passing through other settlements on the way). The settlements are numbered by integers from 1 to  n. All the roads are two-way and have the same length equal to 1. It is not allowed to move outside the roads. The caravan goes from settlement  s to settlement  f following one of the shortest routes. Settlement  r is the villain’s den. A band of robbers from settlement  r has received an assignment to rob the caravan. In the evening they will have an exact plan of the route that the caravan will take the next morning. During the night they will be able to move to any settlement on the route, even to settlement  s or  f. They will lay an ambush there and rob the caravan in the morning. Of course, among all such settlements the robbers will choose the one closest to settlement  r. The robbers have a lot of time until the evening. They don’t know the caravan’s route yet, but they want to know the maximum distance they will have to go in the worst case to the settlement where they will rob the caravan. Help Ilya calculate this distance, and it may happen that he will attend his classes again!

Input

The first line contains integers n and m (3 ≤ n ≤ 10 5; 2 ≤ m ≤ 10 5), which are the number of settlements in the game world and the number of roads between them. Each of the following m lines describes a road. The description contains integers a and  b, which are the numbers of the settlements connected by the road. It is guaranteed that each road connects two different settlements and there is at most one road between any two settlements. It is also guaranteed that the road network is connected. In the last line you are given pairwise different integers sf, and r, which are the numbers of the settlements described above.

Output

In the only line output the required distance.
 
input output
7 7
1 2
2 4
2 5
3 4
4 6
5 6
6 7
1 7 3
2
 
 
 
题目大意:
大意是有一支商队要从点 s 到点 f,这个商队只会走走短路(题目保证能从 s 到 f ,同时,走每条边的时间花费都是 1),有一个强盗在点 r ,这个强盗要去抢商队
就问你在最坏情况下,强盗能够拦截到这个商队所需走的最短距离.
比如样例:
这里商队需要从点 1 到点 7 ,强盗在点 3,我们可以很容易知道商队的路线有两条:
1 -> 2 -> 4 ->6 -> 7
1 -> 2 -> 5 ->6 -> 7
而在最坏情况下,也就是商队走1->2->5->6->7时,强盗在点 3 想要拦截到商队需要至少走两步(到 2 或者 6 ) 才能拦截到商队
所以样例的输出是 2
 
 
解题报告:
首先我们肯定需要求一次最短路,这个最短路是强盗所在的点 r ,到其他各个点的最短路,我们不妨设置值为 maxv[](不要奇怪这个命名)
即maxv[ x ]表示点 r 到点 x 的最短距离.
显然我们这道题需要使用到DP(递推)求解,注意到这些递推的点必须是最短路上的点同时也必须只能转移到最短路上的点,那么我们该如何确定这个最短路的点呢?
我们令 d[] 这个数组表示从终点 f 到其他各个点的最短距离,那么我们只要在转移时必须满足 d[v] == d[u] - 1 即可(从u转移到v) <仔细想想>
这样我们就保证了递推过程的点肯定是最短路上的点,也只能转移到最短路上的点
之后我们考虑DP值,我们令DP[ i ] 表示拦截从 起点 到 i 这个点所在的最短路的最小花费
那么我们很容易的就可以得出递推方程(用 u 去更新 v)
dp[v] = max( maxv[u] } <仔细想想> ,取max是因为我们要保证最差情况
 
那么当我们扩展到点 u时,需要首先更新 maxv 值,即 maxv[u] = min{ maxv[u] , dp[u] } ,这个方程就非常容易了,因为拦截从 起点 到 点i所在的最短路不外乎就两种方式,一种在前面拦截,第二种在这个点 i 拦截,所以我们取个min即可(强盗也要走最短的对不对)
 
那么,我们就解决了这道题
 
#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
using namespace std;
const int maxn = 1e5 + ;
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
vector<int>e[maxn];
int dp[maxn] , d[maxn] , maxv[maxn], n , m , s , f , r , used[maxn] ;
queue<int>q; void solve()
{
memset(dp , , sizeof(dp));memset(d,-,sizeof(d));memset(maxv,-,sizeof(maxv));memset(used,,sizeof(used));
d[f] = ;
q.push(f);
while(!q.empty())
{
int x = q.front();q.pop();
for(int i = ; i < e[x].size() ; ++ i)
{
int v = e[x][i];
if (d[v] == -)
{
d[v] = d[x] + ;
q.push(v);
}
}
}
maxv[r] = ;
q.push(r);
while(!q.empty())
{
int x = q.front();q.pop();
for(int i = ; i < e[x].size() ; ++ i)
{
int v = e[x][i];
if (maxv[v] == -)
{
maxv[v] = maxv[x] + ;
q.push(v);
}
}
}
dp[s] = maxv[s];used[s] = ;
q.push(s);
while(!q.empty())
{
int x = q.front();q.pop();
maxv[x] = min(maxv[x],dp[x]);
for(int i = ; i < e[x].size() ; ++ i)
{
int v = e[x][i];
if (d[x] - d[v] == )
{
dp[v] = max(dp[v],maxv[x]);
if (!used[v])
{
q.push(v);
used[v] = ;
}
}
}
}
printf("%d\n",maxv[f]);
} int main(int argc,char *argv[])
{
scanf("%d%d",&n,&m);
while(m--)
{
int u ,v ;
scanf("%d%d",&u,&v);u--,v--;
e[u].push_back(v);e[v].push_back(u);
}
scanf("%d%d%d",&s,&f,&r);s--,f--,r--;
solve();
return ;
}
 

URAL 2034 : Caravans的更多相关文章

  1. URAL 2034 Caravans(变态最短路)

    Caravans Time limit: 1.0 secondMemory limit: 64 MB Student Ilya often skips his classes at the unive ...

  2. URAL

    URAL 2035 输入x,y,c,  找到任意一对a,b 使得a+b==c&& 0<=a<=x && 0<=b<=y 注意后两个条件,顺序搞错 ...

  3. hdu 2034人见人爱A-B

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2034 解题思路:set的基本用法 #include<iostream> #include& ...

  4. 后缀数组 POJ 3974 Palindrome && URAL 1297 Palindrome

    题目链接 题意:求给定的字符串的最长回文子串 分析:做法是构造一个新的字符串是原字符串+反转后的原字符串(这样方便求两边回文的后缀的最长前缀),即newS = S + '$' + revS,枚举回文串 ...

  5. ural 2071. Juice Cocktails

    2071. Juice Cocktails Time limit: 1.0 secondMemory limit: 64 MB Once n Denchiks come to the bar and ...

  6. ural 2073. Log Files

    2073. Log Files Time limit: 1.0 secondMemory limit: 64 MB Nikolay has decided to become the best pro ...

  7. ural 2070. Interesting Numbers

    2070. Interesting Numbers Time limit: 2.0 secondMemory limit: 64 MB Nikolay and Asya investigate int ...

  8. ural 2069. Hard Rock

    2069. Hard Rock Time limit: 1.0 secondMemory limit: 64 MB Ilya is a frontman of the most famous rock ...

  9. ural 2068. Game of Nuts

    2068. Game of Nuts Time limit: 1.0 secondMemory limit: 64 MB The war for Westeros is still in proces ...

随机推荐

  1. hdu3308LCIS(线段树,点更新,段查寻,查寻时一定要注意跨越时如何计算)

    Problem Description Given n integers. You have two operations: U A B: replace the Ath number by B. ( ...

  2. [Angular 2] Router basic and Router Params

    When we define router in Angualr 2, we use @RouteConcfig() When we want to display component, we use ...

  3. jdbc连接数据库和jdbc-odbc桥接方式连接数据库

    //这种方式为jdbc直接连接,需要添加jar文件 1 package com.howe2; import java.sql.*; public class test2 { public static ...

  4. mongodb入门教程

    title: mongodb入门教程 date: 2016-04-06 14:47:18 tags: --- 为什么要认识呢,因为这玩意就一傻逼 借用一下百科的介绍 MongoDB 是一个介于关系数据 ...

  5. 在Linux系统安装VMware Tools

    --Install VMware Tools --复制VMware Tools-xxx.tar.gz到根目录 cd /tar -vzxf VMware Tools-xxx.tar.gzcd vmwar ...

  6. mui实现支付宝支付功能

    <!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>H ...

  7. 查看sqlserver默认的编码格式

    SQL语句:SELECT COLLATIONPROPERTY('Chinese_PRC_Stroke_CI_AI_KS_WS', 'CodePage') 936 简体中文GBK 950 繁体中文BIG ...

  8. tkinter之文件对话框

    from tkinter import * from tkinter.filedialog import * filetype = [('Python Files', '*.py *.pyw'), ( ...

  9. Android环境搭建-Eclipse-Luna

    所需软件:eclipse-jee-luna-R-win32-x86_64 所需插件:Adt 23.02 其他:Android SDK 环境搭建-JDK安装.Eclipse安装 配置安卓环境变量: cm ...

  10. HAPROXY 配置项/配置实例

    HAPROXY 配置项/实例 常用配置选项: OPTION 选项: option httpclose :HAProxy会针对客户端的第一条请求的返回添加cookie并返回给客户端,客户端发送后续请求时 ...