Binomial theorem

One can define\[{r \choose k}=\frac{r\,(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!}\]
Then, if \(x\) and \(y\) are real numbers with \(|x| > |y|\)( This is to guarantee convergence. Depending on \(r\), the series may also converge sometimes when \(|x| = |y|\).), and \(r\) is any complex number, one has
\[(x+y)^r =\sum_{k=0}^\infty {r \choose k} x^{r-k} y^k \]

Valid for \(|x| < 1\):\[(1+x)^{-1} = \frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + \cdots\]

Lagrange polynomial

\[ L(x) := \sum_{j=0}^{k} y_j \prod_{\begin{smallmatrix}0\le m\le k\\ m\neq j\end{smallmatrix}} \frac{x-x_m}{x_j-x_m}\]

Lucas' theorem

For non-negative integers m and n and a prime p, the following congruence relation holds:\[\binom{m}{n}\equiv\prod_{i=0}^k\binom{m_i}{n_i}\pmod p,\]
where\[m=m_kp^k+m_{k-1}p^{k-1}+\cdots +m_1p+m_0,\]
and\[n=n_kp^k+n_{k-1}p^{k-1}+\cdots +n_1p+n_0\]
are the base \(p\) expansions of m and n respectively. This uses the convention that \(\tbinom{m}{n} = 0\) if \(m < n\).

A binomial coefficient \(\tbinom{m}{n}\) is divisible by a prime \(p\) if and only if at least one of the base \(p\) digits of \(n\) is greater than the corresponding digit of \(m\).

The p-th power mapping

OI不得不知的那些数学定理的更多相关文章

  1. 134. Gas Station(数学定理依赖题)

    There are N gas stations along a circular route, where the amount of gas at station i is gas[i]. You ...

  2. 数学定理证明机械化的中国学派(II)

    所谓"学派"是指:存在一帮人,具有同样或接近的学术观点或学术立场,採用某种特定的"方法"(或途径),在一个学术方向上共同开展工作.而且做出了相当有迎影响的学术成 ...

  3. OI常用数学定理&方法总结

    组合数计算($O(n)$) https://www.cnblogs.com/linzhuohang/p/11548813.html Lucas定理 如果要计算很大的组合数,但模数较小,考虑这个方法 对 ...

  4. tensorflow deepmath:基于深度学习的自动化数学定理证明

    Deepmath Deepmath项目旨在改进使用深度学习和其他机器学习技术的自动化定理证明. Deepmath是Google研究与几所大学之间的合作. 免责声明: 该存储库中的源代码不是Google ...

  5. 【bzoj5056】OI游戏 最短路+矩阵树定理

    题目描述 给出一张无向图,求满足 0号点到所有点的路径长等于原图中它们之间最短路 的生成树的个数. 输入 第一行一个整数N,代表原图结点. 接下来N行,每行N个字符,描绘了一个邻接矩阵.邻接矩阵中, ...

  6. HDU 3903 Trigonometric Function(数学定理)

    Trigonometric Function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Oth ...

  7. [自用]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 本文受 NaVi_Awson 的启发,甚至一些地方直接引用,在此说明. 1 数论 1.0 gcd 1.0.0 gcd $gcd(a,b) = gcd(b,a\;mod\;b)$ 证明:设 ...

  8. [总结]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...

  9. poj1006Biorhythms(同余定理)

    转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298 本文转自head for better博客,版权归其所有,代码系本人自己编 ...

随机推荐

  1. Linux系统编程——进程调度浅析

    概述 操作系统要实现多进程.进程调度不可缺少. 有人说,进程调度是操作系统中最为重要的一个部分.我认为这样的说法说得太绝对了一点,就像非常多人动辄就说"某某函数比某某函数效率高XX倍&quo ...

  2. python 使用xrld

    下载xrld.要对应合适的python版本: 下载tar.gz包.解压 通过cmd进入该目录. setup.py build setup.py install 安装成功: 添加路径: from sys ...

  3. css3属性选择器总结

    前两节介绍了css3属性选择器与css2属性选择器中: 包含字符串和以字符串选择器开头的选择器的比较. 全部属性选择器: 包含字符串讲解对比实例讲解链接: http://www.cnblogs.com ...

  4. ubuntu 中 ThinkPHP 上传文件无法得到文件名

    在 419-424 行.

  5. Java 网络编程(三) 创建和使用URL访问网络上的资源

    链接地址:http://www.cnblogs.com/mengdd/archive/2013/03/09/2951877.html 创建和使用URL访问网络上的资源 URL(Uniform Reso ...

  6. 【Java】 实现一个简单文件浏览器(1)

    学习Java的Swing的时候写的一个超简单文件浏览器 效果如图: 项目结构: 这里面主要用了两个控件,JTree和JTable 下面先说下左侧的文件树如何实现: 首先是FileTree类,继承于JT ...

  7. Last Defence (run time error)

    Last Defence时间限制:1000 ms | 内存限制:65535 KB描述Given two integers A and B. Sequence S is defined as follo ...

  8. C++的常量折叠(三)

    背景知识 在开始之前先说一下符号表,这个编译器中的东西.下面看一下百度百科中的描述: 符号表是一种用于语言翻译器中的数据结构.在符号表中,程序源代码中的每个标识符都和它的声明或使用信息绑定在一起,比如 ...

  9. Database SQL script automation management tools investigation

    Recently researched about database SQL scripts auto management tools, recorded the results here. Res ...

  10. 【转】VPN服务器配置详解

    参考博文: VPN服务器配置详解   等公司上服务器开始配置 vpn