Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given  < p ≤  and  < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input


Sample Output

no
no
yes
no
yes
yes

Source

感觉好久没A题了,脑子都快生锈了,所有赶紧做做题。

求(a^p)%p==a,数据大所有用long long

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define N 1000000
#define inf 1e12
ll pow_mod(ll a,ll n,ll MOD)
{
if(n==)
return %MOD;
ll tt=pow_mod(a,n>>,MOD);
ll ans=tt*tt%MOD;
if(n&)
ans=ans*a%MOD;
return ans;
}
int main()
{
ll p,a;
while(scanf("%I64d%I64d",&p,&a)==){
if(p== && a==){
break;
}
int flag=;
for(int i=;i<(int)sqrt(p+0.5);i++){
if(p%i==){
flag=;
break;
}
}
if(flag==){
printf("no\n");
continue;
}
ll ans=pow_mod(a,p,p); //printf("%I64d\n",ans);
if(ans==a){
printf("yes\n");
}else{
printf("no\n");
}
}
return ;
}

poj 3641 Pseudoprime numbers(快速幂)的更多相关文章

  1. poj 3641 Pseudoprime numbers 快速幂+素数判定 模板题

    Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7954 Accepted: 3305 D ...

  2. poj 3641 Pseudoprime numbers

    题目连接 http://poj.org/problem?id=3641 Pseudoprime numbers Description Fermat's theorem states that for ...

  3. POJ 3641 Pseudoprime numbers (数论+快速幂)

    题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...

  4. POJ3641 Pseudoprime numbers(快速幂+素数判断)

    POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...

  5. poj 3641 Pseudoprime numbers Miller_Rabin测素裸题

    题目链接 题意:题目定义了Carmichael Numbers 即 a^p % p = a.并且p不是素数.之后输入p,a问p是否为Carmichael Numbers? 坑点:先是各种RE,因为po ...

  6. POJ 3641 Pseudoprime numbers (miller-rabin 素数判定)

    模板题,直接用 /********************* Template ************************/ #include <set> #include < ...

  7. HDU 3641 Pseudoprime numbers(快速幂)

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11336   Accepted: 4 ...

  8. POJ 1995:Raising Modulo Numbers 快速幂

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5532   Accepted: ...

  9. pojPseudoprime numbers (快速幂)

    Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...

随机推荐

  1. bzoj1637 [Usaco2007 Mar]Balanced Lineup

    Description Farmer John 决定给他的奶牛们照一张合影,他让 N (1 ≤ N ≤ 50,000) 头奶牛站成一条直线,每头牛都有它的坐标(范围: 0..1,000,000,000 ...

  2. UESTC_树上战争 CDOJ 32

    给一棵树,如果树上的某个节点被某个人占据,则它的所有儿子都被占据,lxh和pfz初始时分别站在两个节点上,谁当前所在的点被另一个人占据,他就输了比赛,问谁能获胜. Input 输入包含多组数据 每组第 ...

  3. windows多线程没那么难

    windows多线程没那么难 作者:vpoet mail:vpoet_sir@163.com 上一博文中我们引入了CreateThread()多线程编程一个简单的例子,事实上我说windows 多线程 ...

  4. ESCAPE用法

    ESCAPE用法1.使用 ESCAPE 关键字定义转义符: 在模式中,当转义符置于通配符之前时,该通配符就解释为普通字符. 2.ESCAPE 'escape_character' 允许在字符串中搜索通 ...

  5. Team Formation(思维)

    Team Formation Time Limit: 3 Seconds      Memory Limit: 131072 KB For an upcoming programming contes ...

  6. ff与ie 的关于js兼容性

    FF的FIREBUG,不仅能测试JS还能检查CSS错误,是一般常用的.但它主要检查FF方面的错误,对IE就无能为力了.要测试IE,就用ieTester,它可以测试IE几乎所有版本(1.0恐怕也用不到测 ...

  7. PHP安装mcrypt.so报错 mcrypt.h not found 的解决办法

    报错内容:configure: error: mcrypt.h not found. Please reinstall libmcrypt 网上搜索了很多,包括自带的 yum install libm ...

  8. BeeswaxException 以及其他问题

    Could not read table BeeswaxException(handle=QueryHandle(log_context='ae18ae74-518f-400b-b4b0-d399ed ...

  9. Sql语句之查询所有学生所有科目分数及总分

    昨天练Sql语句,数据库建了四个表分别是,学生表,课程表,成绩表以及教师表(教师表不在讨论范围),突然想到以前高中时代老师手上的那张成绩表,然后我就寻思着能不能用Sql语句把表打印出来,以下是我的思考 ...

  10. mvc 微软票据验证

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...