ShortestPath:Silver Cow Party(POJ 3268)
题目大意:一群牛在一块农田的不同的点,现在他们都要去到同一个地方开会,然后现在从那个地方回到原来的位置,点与点之间的连线都是单向的,并且通过一个路径需要一定时间,问你现在哪只牛需要最多的时间?
这一题可以这么看,回来的时候可以是从汇点(开会的地方)去到不同点的最短距离,然后从不同的点去的时候可以看做从汇点沿着路径的反方向看怎么走最短时间。
这样看这一题就简单很多了,因为没有负边,直接Dijkstra算法,算两次即可
#include <iostream>
#include <functional>
#include <algorithm>
#define MAX_N 1001
#define MAX_T 10000000 using namespace std; typedef int Position;
typedef struct edge_
{
int to;
int cost;
Position next;
}Edge;
typedef struct node_
{
Position point;
Position v;
int min_cost;
}Node; static Node Gragh_Head[MAX_N];
static Node Gragh_Head_rev[MAX_N];
static Edge Gragh_Edge[MAX_N *MAX_N];
static Edge Gragh_Edge_rev[MAX_N *MAX_N];
static Node heap[MAX_N];
static bool used[MAX_N]; void Search_Dijkstra(const int, const int);
int Delete_Min(int *const);
void Insert(Position, Node); int main(void)
{
int Node_sum, Path_sum, Goal_Farm, tmp_cost, tmp_to, tmp_start; while (~scanf("%d%d%d", &Node_sum, &Path_sum, &Goal_Farm))
{
for (int i = ; i <= Node_sum; i++)
{
Gragh_Head[i].point = -;
Gragh_Head_rev[i].point = -;
}
for (int i = ; i < Path_sum; i++)//邻接表储存
{
scanf("%d%d%d", &tmp_to, &tmp_start, &tmp_cost);//起点终点反过来
Gragh_Edge[i].to = tmp_to;//单向边,因为各个地方的牛要走到#X位置,相当于从#X走到各个点
Gragh_Edge[i].cost = tmp_cost;
Gragh_Edge[i].next = Gragh_Head[tmp_start].point;
Gragh_Head[tmp_start].point = i; Gragh_Edge_rev[i].to = tmp_start;//反向边存在另一个图中
Gragh_Edge_rev[i].cost = tmp_cost;
Gragh_Edge_rev[i].next = Gragh_Head_rev[tmp_to].point;
Gragh_Head_rev[tmp_to].point = i;
}
Search_Dijkstra(Node_sum, Goal_Farm);
}
return ;
} void Insert(Position pos, Node goal)
{
Position s = pos, pr; for (; s > ; s = pr)
{
pr = s % == ? s >> : (s - ) >> ;
if (heap[pr].min_cost > goal.min_cost) heap[s] = heap[pr];
else break;
}
heap[s] = goal;
} int Delete_Min(int *const size)
{
Position s1, s2, pr = , s;
Node out = heap[], tmp = heap[(*size)--]; for (; pr <= *size;)
{
s1 = pr << ; s2 = s1 + ;
if (s2 <= *size)
{
s = heap[s1].min_cost < heap[s2].min_cost ? s1 : s2;
heap[pr] = heap[s];
pr = s;
}
else if (s1 <= *size)
{
heap[pr] = heap[s1]; pr = s1;
break;
}
else break;
}
Insert(pr, tmp);
return out.v;
} void Search_Dijkstra(const int Node_sum, const int start)
{
int size = ;
Position V, adj_v; memset(used, , sizeof(used));
for (int i = ; i <= Node_sum; i++)
{
Gragh_Head[i].min_cost = MAX_T;
Gragh_Head[i].v = i;
}
Insert(++size, Gragh_Head[start]);
Gragh_Head[start].min_cost = ; while (size != )
{
V = Delete_Min(&size);
used[V] = ;
for (int k = Gragh_Head[V].point; k != -; k = Gragh_Edge[k].next)
{
adj_v = Gragh_Edge[k].to;
if (Gragh_Head[adj_v].min_cost > Gragh_Head[V].min_cost + Gragh_Edge[k].cost)
{
Gragh_Head[adj_v].min_cost = Gragh_Head[V].min_cost + Gragh_Edge[k].cost;
if (!used[adj_v])
Insert(++size, Gragh_Head[adj_v]);
}
}
} for (int i = ; i <= Node_sum; i++)
{
Gragh_Head_rev[i].min_cost = MAX_T;
Gragh_Head_rev[i].v = i;
}
memset(used, , sizeof(used));
size = ;//堆从0开始,反向边开始
Insert(++size, Gragh_Head_rev[start]);
Gragh_Head_rev[start].min_cost = ; while (size != )
{
V = Delete_Min(&size);
used[V] = ;
for (int k = Gragh_Head_rev[V].point; k != -; k = Gragh_Edge_rev[k].next)
{
adj_v = Gragh_Edge_rev[k].to;
if (Gragh_Head_rev[adj_v].min_cost > Gragh_Head_rev[V].min_cost + Gragh_Edge_rev[k].cost)
{
Gragh_Head_rev[adj_v].min_cost = Gragh_Head_rev[V].min_cost + Gragh_Edge_rev[k].cost;
if (!used[adj_v])
Insert(++size, Gragh_Head_rev[adj_v]);
}
}
}
int ans = -;
for (int i = ; i <= Node_sum; i++)
ans = max(ans, Gragh_Head[i].min_cost + Gragh_Head_rev[i].min_cost);
printf("%d\n", ans);
}
ShortestPath:Silver Cow Party(POJ 3268)的更多相关文章
- kuangbin专题专题四 Silver Cow Party POJ - 3268
题目链接:https://vjudge.net/problem/POJ-3268 题意:点X处开办排队,其他点的牛到X点去参加派对,然后从X点回到各自的点,通路是单向的,所有牛都要走最短路, 求出所有 ...
- Silver Cow Party POJ - 3268 (固定起点和固定终点的最短路)
思路:有向图.假设在X牧场参加party,从X回家的时候,以X为起点,使用一次Dijkstra算法即可.难点在于去X参加party的最短路如何求解. 这时候我们可以反向建图,即把原来有向图的方向全部反 ...
- Silver Cow Party POJ - 3268
#include<iostream> #include<queue> #include<cstring> using namespace std; +,INF=0x ...
- DIjkstra(反向边) POJ 3268 Silver Cow Party || POJ 1511 Invitation Cards
题目传送门 1 2 题意:有向图,所有点先走到x点,在从x点返回,问其中最大的某点最短路程 分析:对图正反都跑一次最短路,开两个数组记录x到其余点的距离,这样就能求出来的最短路以及回去的最短路. PO ...
- POJ 3268 Silver Cow Party (双向dijkstra)
题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total ...
- POJ 3268 Silver Cow Party (最短路径)
POJ 3268 Silver Cow Party (最短路径) Description One cow from each of N farms (1 ≤ N ≤ 1000) convenientl ...
- POJ 3268——Silver Cow Party——————【最短路、Dijkstra、反向建图】
Silver Cow Party Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Su ...
- POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。
POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...
- POJ 3268 Silver Cow Party 最短路
原题链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total ...
随机推荐
- 【poj3348】 Cows
http://poj.org/problem?id=3348 (题目链接) 题意 给出平面上n个点,以这n个点中的一些围成的多边形面积 div 50的最大值. Solution 凸包求面积. 很好做, ...
- TYVJ P1403 [NOIP2010]关押罪犯
TYVJ的编译器总是要搞点岔子出来,上次是double必须用f输出而不能用lf,这次又不知道为何CE 于是去了洛谷P1525测试,AC 题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1 ...
- ECSHOP Inject PHPCode Into \library\myship.php Via \admin\template.php && \includes\cls_template.php Vul Tag_PHP_Code Execute Getshell
目录 . 漏洞描述 . 漏洞触发条件 . 漏洞影响范围 . 漏洞代码分析 . 防御方法 . 攻防思考 1. 漏洞描述 PHP语言作为开源社区的一员,提供了各种模板引擎,如FastTemplate,Sm ...
- (原)String类两种实例化的区别
String有两种实例化方式,一种是通过直接赋值的方式,另外一种是使用标准的new调用构造方法完成实例化. public class StringDemo { public static void m ...
- loadrunner获取Http信息头中指定值作为参数
); //web_save_header(RESPONSE,"response header"); //web_save_header(REQUEST,"request ...
- POJ2392Space Elevator(贪心+背包)
Space Elevator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9970 Accepted: 4738 De ...
- MySQL中concat函数
MySQL中concat函数使用方法:CONCAT(str1,str2,…) 返回结果为连接参数产生的字符串.如有任何一个参数为NULL ,则返回值为 NULL. 注意:如果所有参数均为非二进制字符串 ...
- javafx之CSS初探
文档:http://www.haogongju.net/art/1807238 javafx中的css元素必须有-fx-前缀. 一.介绍 java8中新增了javafx.css开放了css相关api. ...
- make -e install ,,,make命令的-e选项!
-e, --environment-overrides Environment variables override makefiles.环境变量覆盖Makefile文件. 用这个时,一般都自己编写s ...
- MVC中使用WebMail 发送注册验证信息
在MVC中发送Email 可以使用WebMail :使用起来十分简单.如下: WebMail.SmtpServer = ConfigurationHelper.GetValue("SmtpS ...