C#完美实现斐波那契数列
/// <summary>
/// Use recursive method to implement Fibonacci
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
static int Fn(int n)
{
if (n <= 0)
{
throw new ArgumentOutOfRangeException();
} if (n == 1||n==2)
{
return 1;
}
return checked(Fn(n - 1) + Fn(n - 2)); // when n>46 memory will overflow
}
递归算法时间复杂度是O(n2), 空间复杂度也很高的。当然不是最优的。
自然我们想到了非递归算法了。
一般的实现如下:
/// <summary>
/// Use three variables to implement Fibonacci
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
static int Fn1(int n)
{
if (n <= 0)
{
throw new ArgumentOutOfRangeException();
} int a = 1;
int b = 1;
int c = 1; for (int i = 3; i <= n; i++)
{
c = checked(a + b); // when n>46 memory will overflow
a = b;
b = c;
}
return c;
}
这里算法复杂度为之前的1/n了,比较不错哦。但是还有可以改进的地方,我们可以用两个局部变量来完成,看下吧:
/// <summary>
/// Use less variables to implement Fibonacci
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
static int Fn2(int n)
{
if (n <= 0)
{
throw new ArgumentOutOfRangeException();
} int a = 1;
int b = 1; for (int i = 3; i <= n; i++)
{
b = checked(a + b); // when n>46 memory will overflow
a = b - a;
}
return b;
}
好了,这里应该是最优的方法了。
值得注意的是,我们要考虑内存泄漏问题,因为我们用int类型来保存Fibonacci的结果,所以n不能大于46(32位操作系统)
C#完美实现斐波那契数列的更多相关文章
- P3986 斐波那契数列
题目描述 定义一个数列: f(0)=a,f(1)=b,f(n)=f(n−1)+f(n−2) 其中 a,b均为正整数,n≥2 . 问有多少种 (a,b),使得 k 出现在这个数列里,且不是前两项. 由于 ...
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- js中的斐波那契数列法
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...
- 剑指Offer面试题:8.斐波那契数列
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...
- 算法: 斐波那契数列C/C++实现
斐波那契数列: 1,1,2,3,5,8,13,21,34,.... //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- Python递归及斐波那契数列
递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可 ...
- 简单Java算法程序实现!斐波那契数列函数~
java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2 ...
随机推荐
- js获取当前时间&js 页面时钟
js获取当前时间 //获取当前时间,格式YYYY-MM-DD function getNowFormatDate() { var date = new Date(); var seperator1 = ...
- 为什么学习Ruby On Rails:
简单总结了一下自己为什么喜欢ruby on rails: 语法简单,写代码很愉快,比较接近伪代码: 喜欢其强大的正则表达式和字符串操作. ruby中面向对象更自由,更动态: ruby给人信任,相信你了 ...
- MSSQL 判断临时表是否存在
方法一: if exists (select * from tempdb.dbo.sysobjects where id = object_id(N'tempdb..#tempcitys') and ...
- JQuery Placeholder - Input提示信息
JQuery Placeholder Placeholder属性是HTML5为Input添加的,在Input上提供一个占位符,文字形式展示输入文字预期值的提示信息. 如: 需要使用:placehold ...
- Linux查看系统资源使用情况(转)
概述: 用 'top -i' 看看有多少进程处于 Running 状态,可能系统存在内存或 I/O 瓶颈,用 free 看看系统内存使用情况,swap 是否被占用很多,用 iostat 看看 I/O ...
- angular.js ng-class-even ng-class-odd ng-cloak(没啥技术含量)
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- logstash 因为jdk版本不对造成索引时间戳失败
版本 logstash 1.5.0 RC2 JDK 1.7.15 Logstash推荐使用JDK 1.7.75 每次启动都是会有部分的数据无法替换日志中的时间戳,导致日志时间戳被认定为当前读取时间. ...
- 数据库 MySql(二)
MySQL(二) 1.外键及连表 外键 一个特殊的索引,只能是指定内容 CREATE TABLE part1 ( nid INT NOT NULL auto_increment PRIMARY KEY ...
- IOS的UI总结
一.UIView常见属性 1.frame 位置和尺寸(以父控件的左上角为原点(0,0)) 2.center 中点(以父控件的左上角为原点(0,0)) 3.bounds 位置和尺寸(以自己的左上角为 ...
- Android如何使用NoHttp
NoHttp 源码及Demo托管在Github欢迎大家Star: https://github.com/yanzhenjie/NoHttp NoHttp是专门做Android网络请求与下载的框架. N ...