描述

   有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。

输入格式

第1行n (n<=2000)
第2到n+1行每行两个数a,b,表示这个矩形的长和宽

输出格式

一个数,最多符合条件的矩形数目

测试样例1

输入


1 5 
6 2 
3 4

输出

2

 
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<vector>
#define ll long long
using namespace std;
const int maxn = ;
vector<int> g[maxn];
int n,a[maxn],b[maxn],topo[maxn],cnt;
int f[maxn],ans;
bool vis[maxn];
void dfs(int x){
vis[x] = true;
for(int i = ;i < g[x].size();i++){
if(!vis[g[x][i]]) dfs(g[x][i]);
}
topo[cnt--] = x;
}
void dp(int x){
if(!g[x].size()){
f[x] = ;
return;
}
for(int i = ;i < g[x].size();i++){
if(!f[g[x][i]]) dp(g[x][i]);
f[x] = max(f[x],f[g[x][i]] + );
}
ans = max(f[x],ans);
}
int main(){
cin>>n;
for(int i = ;i <= n;i++){
scanf("%d%d",&a[i],&b[i]);
if(a[i] < b[i]) swap(a[i],b[i]);
}
for(int i = ;i <= n;i++){
for(int j = i+;j <= n;j++){
if(a[i] > a[j] && b[i] > b[j]) g[i].push_back(j);
else if(a[j] > a[i] && b[j] > b[i]) g[j].push_back(i);
}
}
cnt = n;
for(int i = ;i <= n;i++){
if(!vis[i]) dfs(i);
}
for(int i = ;i <= n;i++){
if(!f[topo[i]]) dp(topo[i]);
}
cout<<ans;
return ;
}

tyvj1213 嵌套矩形的更多相关文章

  1. DAG上的动态规划之嵌套矩形

    题意描述:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽, 矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d, 要求选出尽量多的矩形排成一排,使得除了最后一个外, ...

  2. CJOJ 1070 【Uva】嵌套矩形(动态规划 图论)

    CJOJ 1070 [Uva]嵌套矩形(动态规划 图论) Description 有 n 个矩形,每个矩形可以用两个整数 a, b 描述,表示它的长和宽.矩形 X(a, b) 可以嵌套在矩形 Y(c, ...

  3. NYOJ16|嵌套矩形|DP|DAG模型|记忆化搜索

    矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a& ...

  4. DAG上的动态规划---嵌套矩形(模板题)

    一.DAG的介绍 Directed Acyclic Graph,简称DAG,即有向无环图,有向说明有方向,无环表示不能直接或间接的指向自己. 摘录:有向无环图的动态规划是学习动态规划的基础,很多问题都 ...

  5. P1375 嵌套矩形

    题目Problem 嵌套矩形 Time Limit: 1000ms    Memory Limit: 131072KB 描述Descript. 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形 ...

  6. HDOJ-1069(动态规划+排序+嵌套矩形问题)

    Monkey and Banana HDOJ-1069 这里实际是嵌套矩形问题的变式,也就是求不固定起点的最长路径 动态转移方程为:dp[i]=max(dp[j]+block[i].h|(i,j)∈m ...

  7. [ACM_动态规划] 嵌套矩形

    问题描述:有n个矩阵,每个矩阵可以用两个整数a,b来表示 ,表示他的长和宽,矩阵X (a,b) 可以 嵌套 到Y (c,d) 里面当且仅当 a < c &&  b < d  ...

  8. 02_嵌套矩形(DAG最长路问题)

    来源:刘汝佳<算法竞赛入门经典--训练指南> P60 问题2: 问题描述:有n个矩形,每个矩形可以用两个整数a,b描述,表示它们的长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中的条件 ...

  9. 嵌套矩形——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.非常多问题都能够转化为DAG上的最长路.最短路或路径计数问题. 题目描写叙述: 有n个矩形,每一个矩 ...

随机推荐

  1. 用Canvas玩3D:点-线-面

    声明:本文为原创文章,如需转载,请注明来源WAxes,谢谢! 玩Canvas玩了有两三个礼拜了,平面的东西玩来玩去也就那样,所以就开始折腾3D了. 因为Canvas画布终究还是平面的,所以要有3D就得 ...

  2. html5新增选择器

    分享点html5的学习笔记,比较基础,突然发现通过写博客来记笔记有很多优点呢,平常记得笔记比较简单,复习起来比较吃力,看自己的博客理解起来还比较轻松,而且只有真正理解了才能表达清楚让别人看懂,还锻炼语 ...

  3. ASP.NET MVC5 插件化机制简单实现

    一.前言 nopCommerce的插件机制的核心是使用BuildManager.AddReferencedAssembly将使用Assembly.Load加载的插件程序集添加到应用程序域的引用中.具体 ...

  4. iOS 后台运行 类型

    iOS后台运行,需要有特定的类型才可以进行.这些内容并不是一直不变的,苹果也在逐步的更新这些内容. 本文内容是2015年11月03日时苹果支持的后台运行类型. 这是官方连接地址 其中较为重要的是下面这 ...

  5. 深入学习JavaScript(一)

    1.全局变量与局部变量 全局变量:全局变量就是在函数的外部定义的一个在其他地方都可以调用的变量 局部变量:局部变量是相对于全局变量而言的,局部变量指的是在一个区域内存在这个变量 全局变量的创建原理是在 ...

  6. Bootstrap系列 -- 28. 下拉菜单状态

    下拉菜单项的默认的状态(不用设置)有悬浮状态(:hover)和焦点状态(:focus). 下拉菜单项除了上面两种状态,还有当前状态(.active)和禁用状态(.disabled).这两种状态使用方法 ...

  7. 集群之LVS(负载均衡)详解

    提高服务器响应能力的方法 scale on  在原有服务器的基础上进行升级或者直接换一台新的性能更高的服务器. scale out  横向扩展,将多台服务器并发向外响应客户端的请求.优点:成本低,扩展 ...

  8. SP*

    1.PS1——默认提示符 root@tcx2250-14:/etc# echo $PS1\u@\h:\w\$ \u是用户名 \h是主机名 \w是当前目录的完整路径.请注意当你在主目录下的时候,如上面所 ...

  9. BZOJ-4195 NOI2015Day1T1 程序自动分析 并查集+离散化

    总的来说,这道题水的有点莫名奇妙,不过还好一次轻松A 4195: [Noi2015]程序自动分析 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 836 ...

  10. codevs3196 黄金宝藏

    题目描述 Description 小毛终于到达宝藏点,他意外地发现有一个外星人(名叫Pluto).宝藏是一些太空黄金,有n堆排成一行,每堆中有xi颗黄金.小毛和Pluto决定轮流从中取出黄金,规则是每 ...