codevs 1748 瑰丽华尔兹

2005年NOI全国竞赛

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 大师 Master
 
 
 
题目描述 Description

你跳过华尔兹吗?当音乐响起,当你随着旋律滑动舞步,是不是有一种漫步 仙境的惬意? 众所周知,跳华尔兹时,最重要的是有好的音乐。但是很少有几个人知道, 世界上最伟大的钢琴家一生都漂泊在大海上,他的名字叫丹尼·布德曼·T.D.·柠 檬·1900,朋友们都叫他 1900。 
1900 在 20 世纪的第一年出生在往返于欧美的邮轮弗吉尼亚号上。很不幸, 他刚出生就被抛弃,成了孤儿。1900 孤独的成长在弗吉尼亚号上,从未离开过 这个摇晃的世界。也许是对他命运的补偿,上帝派可爱的小天使艾米丽照顾他。 可能是天使的点化,1900 拥有不可思议的钢琴天赋:从未有人教,从没看过 乐谱,但他却能凭着自己的感觉弹出最沁人心脾的旋律。当 1900 的音乐获得邮 轮上所有人的欢迎时,他才 8 岁,而此时,他已经乘着海轮往返欧美大陆 50 余 次了。 
虽说是钢琴奇才,但 1900 还是个孩子,他有着和一般男孩一样的好奇和调皮,只不过更多一层浪漫的色彩罢了: 这是一个风雨交加的夜晚,海风卷起层层巨浪拍打着弗吉尼亚号,邮轮随着 巨浪剧烈的摇摆。船上的新萨克斯手迈克斯·托尼晕船了,1900 招呼托尼和他 一起坐到舞厅里的钢琴上,然后松开了固定钢琴的闸,于是,钢琴随着海轮的倾 斜滑动起来。准确的说,我们的主角 1900、钢琴、邮轮随着 1900 的旋律一起跳 起了华尔兹,随着“嘣嚓嚓”的节奏,托尼的晕船症也奇迹般的消失了。后来托 尼在回忆录上这样写道: 大海摇晃着我们 使我们转来转去 快速的掠过灯和家具 我意识到我们正在和大海一起跳舞 真是完美而疯狂的舞者 晚上在金色的地板上快乐的跳着华尔兹是不是很惬意呢?也许,我们忘记了 一个人,那就是艾米丽,她可没闲着:她必须在适当的时候施展魔法帮助 1900, 不让钢琴碰上舞厅里的家具。

不妨认为舞厅是一个N行M列的矩阵,矩阵中的某些方格上堆放了一些家具, 其他的则是空地。钢琴可以在空地上滑动,但不能撞上家具或滑出舞厅,否则会 损坏钢琴和家具,引来难缠的船长。 每个时刻,钢琴都会随着船体倾斜的方向向相邻的方格滑动一格,相邻的方 格可以是向东、向西、向南或向北的。而艾米丽可以选择施魔法或不施魔法:如 果不施魔法,则钢琴会滑动;如果施魔法,则钢琴会原地不动。 艾米丽是个天使,她知道每段时间的船体的倾斜情况。她想使钢琴在舞厅里 滑行的路程尽量长,这样 1900 会非常高兴,同时也有利于治疗托尼的晕船。但 艾米丽还太小,不会算,所以希望你能帮助她。

输入描述 Input Description

输入文件的第一行包含 5 个数 N, M, x, y 和 K。N 和 M 描述舞厅的大小,x 和 y 为钢琴的初始位置;我们对船体倾斜情况是按时间的区间来描述的,且从 1 开始计算时间,比如“在[1, 3]时间里向东倾斜,[4, 5]时间里向北倾斜”,因此这 里的 K 表示区间的数目。 以下 N 行,每行 M 个字符,描述舞厅里的家具。第 i 行 第 j 列 的字符若为‘ . ’, 则表示该位置是空地;若为‘ x ’,则表示有家具。 以下 K 行,顺序描述 K 个时间区间,格式为:si ti di(1 ≤ i ≤ K)。表示在时间 区间[si, ti]内,船体都是向 di方向倾斜的。di 为 1, 2, 3, 4 中的一个,依次表示北、 南、西、东(分别对应矩阵中的上、下、左、右)。输入保证区间是连续的,即

s1 = 1

ti = si-1 + 1  (1 < i ≤ K)

tK = T

输出描述 Output Description

输出文件仅有 1 行,包含一个整数,表示钢琴滑行的最长距离(即格子数)。

样例输入 Sample Input

4 5 4 1 3

..xx.

.....

...x.

.....

1 3 4

4 5 1

6 7 2

样例输出 Sample Output

6

数据范围及提示 Data Size & Hint

50%的数据中,1≤N, M≤200,T≤200; 
100%的数据中,1≤N, M≤200,K≤200,T≤40000。

/*
我只想出了BFS暴力搜索,2^t复杂度,稳稳的超时。
正解:DP+单调队列
*/
 ()朴素的DP:
for (~k)//k个时间区间 *200
for (~n,~m) n*m个点 **
for (~时间区间长度) *
/*-----------------------------*/
/*
(2)单调队列
f(i,x,y)f(i,x,y) 表示第i个区间(区间长设为L)后,钢琴处于(x,y)(x,y)的最大滑行距离 假如这个区间方向是向下,则f(i-1,j,y)+(x-j)->f(i,x,y)(x-L<=j<=x)f(i-1,j,y)+(x-j)->f(i,x,y)(x-L<=j<=x)
即这个区间的转移是一列一列的,每一列用一下单调队列优化dp即可 其余方向同理 然后每个时间段内是一列一列(行) 进行递推。 如果朴素枚举是O(n^2)时间无法承受。所以每列(行)用一个单调队列维护dp,队首放着移动距离最大可以到达的点,这样复杂度就降到了O(n)。每次要递推n列(行)。所以总复杂度为O(k*n*m)。 考虑到一个时间段所有的更新操作都是相同的,我们可以考虑单调队列优化
设队尾为(x,y),新插入的点为(x',y'),那么当Distance( (x,y) , (x',y') ) <= f[x'][y'] - f[x][y]时,(x,y)可被删掉
四遍单调队列即可 O(T*m*n) 思路: 1. dp[k][x][y] 表示处理到第 k 个时间区间时,最终点落在 x, y 坐标上,移动的最大距离。 3. dp[k][x][y] = max(dp[k-1][x1][y1] + delta); 由于 delta 是相对偏移量,所以对于 x/y 所在的维度可以用单调队列优化。 4. 由于第 k - 1 次之后,无法确定第 k 步的起始位置,所以要采取枚举的办法,所以最终的时间复杂度为 O(N*M*K) 5. 初始状态为 dp[0][x][y] = 0, 其他赋值为 -INFS,这样才能保证枚举的过程中,最终结果是在以 (x, y) 为起始点出发的。
*/
#define N 205
#include<iostream>
using namespace std;
#include<cstdio>
#define inf 1000000000
typedef long long ll;
ll read()
{
ll ret=,ff=;
char s=getchar();
while(s<''||s>'')
{
if(s=='-') ff=-;
s=getchar();
}
while(s>=''&&s<='')
{
ret=ret*+s-'';
s=getchar();
}
return ret*ff;
}
char a[N][N];
int f[N][N][N];
int xx[]={,-,,,};
int yy[]={,,,-,};
int q[N],pos[N],head,tail;
int n,m,sx,sy,K,ans;
void push(int now,int val,int x,int y)
{
if(val==-inf) return;/*入队前先删除队尾,队尾不够优,就删除。即新入队的元素的可更新距离大于队尾的*/
while(val-now>q[tail]&&head<=tail) tail--;
q[++tail]=val-now;
pos[tail]=now;
}
void dp(int p,int x,int y,int d,int T)
{
head=;tail=;int now=;
while(x<=n&&x>=&&y<=m&&y>=)
{
if(a[x][y]=='x')/*一旦有了障碍物,之前的点都用不到了*/
head=,tail=;
else push(now,f[p-][x][y],x,y);
while(now-pos[head]>T&&head<=tail) head++;/*利用区间长度删除队头,队头储存着这一列(行),距离最远的点*/
if(head<=tail)/*更新之前先删除队头*/
f[p][x][y]=q[head]+now;
else f[p][x][y]=-inf;
ans=max(ans,f[p][x][y]);
x+=xx[d];y+=yy[d];/*更新下一点*/
now++;
}
}
int main()
{
n=read();m=read();sx=read();sy=read();K=read();
for(int i=;i<=n;++i)
scanf("%s",a[i]+);
for(int i=;i<=n;++i)
for(int j=;j<=m;++j)
f[][i][j]=-inf;
f[][sx][sy]=;
int s1,t1,d1;
for(int i=;i<=K;++i)
{
s1=read();t1=read();d1=read();
if(d1==)
{
for(int j=;j<=m;++j)
dp(i,n,j,d1,t1-s1+);
}
if(d1==)
{
for(int j=;j<=m;++j)
dp(i,,j,d1,t1-s1+);
}
if(d1==)
{
for(int j=;j<=n;++j)
dp(i,j,m,d1,t1-s1+);
}
if(d1==)
{
for(int j=;j<=n;++j)
dp(i,j,,d1,t1-s1+);
}
}
printf("%d",ans);
return ;
}

DP+单调队列 codevs 1748 瑰丽华尔兹(还不是很懂具体的代码实现)的更多相关文章

  1. [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)

    DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...

  2. 习题:烽火传递(DP+单调队列)

    烽火传递[题目描述]烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上.一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息:夜晚燃烧干柴,以火光传递军情.在某两座城市之间有n个烽火台,每个烽火台 ...

  3. (noip模拟二十一)【BZOJ2500】幸福的道路-树形DP+单调队列

    Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图. ...

  4. 3622 假期(DP+单调队列优化)

    3622 假期 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 黄金 Gold 题目描述 Description 经过几个月辛勤的工作,FJ决定让奶牛放假.假期可以在1-N天内任意选择 ...

  5. BZOJ1499:[NOI2005]瑰丽华尔兹(DP,单调队列)

    Description 你跳过华尔兹吗?当音乐响起,当你随着旋律滑动舞步,是不是有一种漫步仙境的惬意?众所周知,跳华尔兹时,最重要的是有好的音乐.但是很少有几个人知道,世界上最伟大的钢琴家一生都漂泊在 ...

  6. [BZOJ 2500]幸福的道路 树形dp+单调队列+二分答案

    考试的时候打了个树链剖分,而且还审错题了,以为是每天找所有点的最长路,原来是每天起点的树上最长路径再搞事情.. 先用dfs处理出来每个节点以他为根的子树的最长链和次长链.(后面会用到) 然后用类似dp ...

  7. Codeforces 980F Cactus to Tree 仙人掌 Tarjan 树形dp 单调队列

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF980F.html 题目传送门 - CF980F 题意 给定一个 $n$ 个节点 $m$ 条长为 $1$ 的边 ...

  8. BZOJ.4910.[SDOI2017]苹果树(树形依赖背包 DP 单调队列)

    BZOJ 洛谷 \(shadowice\)已经把他的思路说的很清楚了,可以先看一下会更好理解? 这篇主要是对\(Claris\)题解的简单说明.与\(shadowice\)的做法还是有差异的(比如并没 ...

  9. 洛谷.1782.旅行商的背包(背包DP 单调队列)

    题目链接(卡常背包) 朴素的多重背包是: \(f[i][j] = \max\{ f[i-1][j-k*v[i]]+k*w[i] \}\),复杂度 \(O(nV*\sum num_i)\) 可以发现求\ ...

随机推荐

  1. 容器---List和AbstractList

    一.前言 前面我们介绍了Collection及其抽象实现,在JAVA的容器体系里,由Collection派生出来的有两大体系,即List和Map.本文以及后续文章将重点分析List体系.本文将重点分析 ...

  2. Linux 学习手记(3):Linux基本的文件管理操作

    复制文件和目录 在Linux中使用命令cp来复制文件或者目录,使用方式: cp 源文件(文件夹) 目标文件(文件夹) cp命令常用参数: -r 递归复制整个目录 -v 显示详细信息 移动.重命名一个文 ...

  3. CSS3边框温故

    1.简介:border属性在CSS1中就已经定义了,用来设置元素边框风格,设置不同的边框.颜色.粗细 2.基本属性,包括三个类型值:(1)border-width:设置元素边框的粗细,默认3~4px( ...

  4. Postman的使用

    在我们平时开发中,特别是需要与接口打交道时,无论是写接口还是用接口,拿到接口后肯定都得提前测试一下,这样的话就非常需要有一个比较给力的Http请求模拟工具,现在流行的这种工具也挺多的,像火狐浏览器插件 ...

  5. SAP中关于用户IP信息的获取(转载)

    SAP中如何获取登录用户的IP? 或如何查看哪些IP登录到SAP中: 在Table: USR41中查看,具体字段的说明如下: MANDT   ---   ClientBNAME   ---   登录的 ...

  6. Win10的分辨率问题

    个人觉得win10扁平化的界面给人全新的感觉,但安装后,发现分辨率只有1280x720.1152x864.1024x768(推荐).800x600,不管调整哪一个,都觉得分辨率还是有问题,看起来字体. ...

  7. Atitit.病毒木马程序的感染 传播扩散 原理

    Atitit.病毒木马程序的感染 传播扩散 原理 1. 从木马的发展史考虑,木马可以分为四代 1 2. 木马有两大类,远程控制  vs  自我复制传播1 3. 自我复制2 3.1. 需要知道当前cpu ...

  8. [Android]ViewPager如何只初始化一个页面

    使用过ViewPager的应该都知道,ViewPager的setoffscreenpagelimit()方法,使用该方法可以设置在ViewPager滑动时,左右两侧各保存多少个页面,那我们直接设置se ...

  9. IOS MenuController的部分操作

    这里我们要实现的将是选择按钮的自定义 综合上一节的随笔,这里给出效果图. ViewController.m // // ViewController.m // CX-MenuController // ...

  10. 局域网内搭建git

    git简介:请大家参看git官网的介绍 http://git-scm.com/book/zh/v1  还有这位大神的git教程:http://www.liaoxuefeng.com/wiki/0013 ...