python数字图像处理(7):图像的形变与缩放
图像的形变与缩放,使用的是skimage的transform模块,函数比较多,功能齐全。
1、改变图片尺寸resize
函数格式为:
skimage.transform.resize(image, output_shape)
image: 需要改变尺寸的图片
output_shape: 新的图片尺寸
from skimage import transform,data
import matplotlib.pyplot as plt
img = data.camera()
dst=transform.resize(img, (80, 60))
plt.figure('resize') plt.subplot(121)
plt.title('before resize')
plt.imshow(img,plt.cm.gray) plt.subplot(122)
plt.title('before resize')
plt.imshow(dst,plt.cm.gray) plt.show()
将camera图片由原来的512*512大小,变成了80*60大小。从下图中的坐标尺,我们能够看出来:
2、按比例缩放rescale
函数格式为:
skimage.transform.rescale(image, scale[, ...])
scale参数可以是单个float数,表示缩放的倍数,也可以是一个float型的tuple,如[0.2,0.5],表示将行列数分开进行缩放
from skimage import transform,data
img = data.camera()
print(img.shape) #图片原始大小
print(transform.rescale(img, 0.1).shape) #缩小为原来图片大小的0.1倍
print(transform.rescale(img, [0.5,0.25]).shape) #缩小为原来图片行数一半,列数四分之一
print(transform.rescale(img, 2).shape) #放大为原来图片大小的2倍
结果为:
(512, 512)
(51, 51)
(256, 128)
(1024, 1024)
3、旋转 rotate
skimage.transform.rotate(image, angle[, ...],resize=False)
angle参数是个float类型数,表示旋转的度数
resize用于控制在旋转时,是否改变大小 ,默认为False
from skimage import transform,data
import matplotlib.pyplot as plt
img = data.camera()
print(img.shape) #图片原始大小
img1=transform.rotate(img, 60) #旋转90度,不改变大小
print(img1.shape)
img2=transform.rotate(img, 30,resize=True) #旋转30度,同时改变大小
print(img2.shape) plt.figure('resize') plt.subplot(121)
plt.title('rotate 60')
plt.imshow(img1,plt.cm.gray) plt.subplot(122)
plt.title('rotate 30')
plt.imshow(img2,plt.cm.gray) plt.show()
显示结果:
4、图像金字塔
以多分辨率来解释图像的一种有效但概念简单的结构就是图像金字塔。图像金字塔最初用于机器视觉和图像压缩,一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低的图像集合。金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似。当向金字塔的上层移动时,尺寸和分辨率就降低。
在此,我们举一个高斯金字塔的应用实例,函数原型为:
skimage.transform.pyramid_gaussian(image, downscale=2)
downscale控制着金字塔的缩放比例
import numpy as np
import matplotlib.pyplot as plt
from skimage import data,transform image = data.astronaut() #载入宇航员图片
rows, cols, dim = image.shape #获取图片的行数,列数和通道数
pyramid = tuple(transform.pyramid_gaussian(image, downscale=2)) #产生高斯金字塔图像
#共生成了log(512)=9幅金字塔图像,加上原始图像共10幅,pyramid[0]-pyramid[1] composite_image = np.ones((rows, cols + cols / 2, 3), dtype=np.double) #生成背景 composite_image[:rows, :cols, :] = pyramid[0] #融合原始图像 i_row = 0
for p in pyramid[1:]:
n_rows, n_cols = p.shape[:2]
composite_image[i_row:i_row + n_rows, cols:cols + n_cols] = p #循环融合9幅金字塔图像
i_row += n_rows plt.imshow(composite_image)
plt.show()
上右图,就是10张金字塔图像,下标为0的表示原始图像,后面每层的图像行和列变为上一层的一半,直至变为1
除了高斯金字塔外,还有其它的金字塔,如:
skimage.transform.pyramid_laplacian(image, downscale=2):
python数字图像处理(7):图像的形变与缩放的更多相关文章
- python数字图像处理(17):边缘与轮廓
在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_c ...
- 「转」python数字图像处理(18):高级形态学处理
python数字图像处理(18):高级形态学处理 形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一 ...
- Win8 Metro(C#) 数字图像处理--1 图像打开,保存
原文:Win8 Metro(C#) 数字图像处理--1 图像打开,保存 作为本专栏的第一篇,必不可少的需要介绍一下图像的打开与保存,一便大家后面DEMO的制作. Win8Metro编程中,图像相关 ...
- python数字图像处理(1):环境安装与配置
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...
- 初始----python数字图像处理--:环境安装与配置
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...
- Win8 Metro(C#)数字图像处理--4图像颜色空间描述
原文:Win8 Metro(C#)数字图像处理--4图像颜色空间描述 图像颜色空间是图像颜色集合的数学表示,本小节将针对几种常见颜色空间做个简单介绍. /// <summary> / ...
- python数字图像处理(5):图像的绘制
实际上前面我们就已经用到了图像的绘制,如: io.imshow(img) 这一行代码的实质是利用matplotlib包对图片进行绘制,绘制成功后,返回一个matplotlib类型的数据.因此,我们也可 ...
- python数字图像处理(五) 图像的退化和复原
import cv2 import numpy as np import matplotlib.pyplot as plt import scipy import scipy.stats %matpl ...
- python数字图像处理(11):图像自动阈值分割
图像阈值分割是一种广泛应用的分割技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域(目标区域和背景区域)的组合,选取一个比较合理的阈值,以确定图像中每个像素 ...
随机推荐
- iOS开发之保存照片到系统相册(Photo Album)
iOS开发之保存照片到系统相册(Photo Album) 保存照片到系统相册这个功能很多社交类的APP都有的,今天我们简单讲解一下,如何将图片保存到系统相册(Photo Album). 创建UIIma ...
- c语言 拼接字符串
#include<stdio.h> #include<stdlib.h> void main() { ] = "ca"; ] = "lc" ...
- XMind快捷键
XMind 是一款非常实用的思维导图软件,可以画各种结构图鱼骨图.二维图.树形图.逻辑图.组织结构图等!下面是常用的快捷键统计! 快捷鍵(Windows) 快捷鍵(Mac) 描述 Ctrl+N Com ...
- PMP 项目管理过程组与知识领域
- 【故障处理】ORA-30012的解决过程
[故障处理]ORA-30012的解决过程 1 BLOG文档结构图 2 前言部分 2.1 导读和注意事项 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其它你所不知道的知识,~O ...
- 读书摘要:第七章 闩Suan锁和自旋锁
摘要: 1.闩锁就像是内存上的锁,随着越来越多的线程参与进来,他们争相访问同一块内存,导致堵塞.2.自旋锁就是闩锁,不同之处是如果访问的内存不可用,它将继续检查轮询一段时间.3.拴锁和自旋锁是我们无法 ...
- MyCat 学习笔记 第八篇.数据分片 之 求摸运算分片
1 应用场景 Mycat 自带了多套数据分片的机制,其实根据数值取摸应该是最简单的一种. 优点:数据离散概率较为平均,可以有效的提高应用的数据吞吐. 缺点:比较明显,后期数据运维与迁移比较困难.好在M ...
- [转]How to insert a row between two rows in an existing excel with HSSF (Apache POI)
本文转自:http://stackoverflow.com/questions/5785724/how-to-insert-a-row-between-two-rows-in-an-existing- ...
- uva 1606 amphiphilic carbon molecules【把缩写写出来,有惊喜】(滑动窗口)——yhx
Shanghai Hypercomputers, the world's largest computer chip manufacturer, has invented a new classof ...
- 类似区间计数的种类并查集两题--HDU 3038 & POJ 1733
1.POJ 1733 Parity game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5744 Accepted: ...