CSAIndividual.py

 import numpy as np
import ObjFunction class CSAIndividual: '''
individual of clone selection algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for clone selection algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

CSA.py

 import numpy as np
from CSAIndividual import CSAIndividual
import random
import copy
import matplotlib.pyplot as plt class CloneSelectionAlgorithm: '''
the class for clone selection algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[beta, pm, alpha_max, alpha_min]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros(self.sizepop)
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of ba
'''
for i in xrange(0, self.sizepop):
ind = CSAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
the evolution process of the clone selection algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
while self.t < self.MAXGEN:
self.t += 1
tmpPop = self.reproduction()
tmpPop = self.mutation(tmpPop)
self.selection(tmpPop)
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex]) self.avefitness = np.mean(self.fitness)
self.trace[self.t - 1, 0] = \
(1 - self.best.fitness) / self.best.fitness
self.trace[self.t - 1, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
print("Optimal function value is: %f; " % self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def reproduction(self):
'''
reproduction
'''
tmpPop = []
for i in xrange(0, self.sizepop):
nc = int(self.params[1] * self.sizepop)
for j in xrange(0, nc):
ind = copy.deepcopy(self.population[i])
tmpPop.append(ind)
return tmpPop def mutation(self, tmpPop):
'''
hypermutation
'''
for i in xrange(0, self.sizepop):
nc = int(self.params[1] * self.sizepop)
for j in xrange(1, nc):
rnd = np.random.random(1)
if rnd < self.params[0]:
# alpha = self.params[
# 2] + self.t * (self.params[3] - self.params[2]) / self.MAXGEN
delta = self.params[2] + self.t * \
(self.params[3] - self.params[3]) / self.MAXGEN
tmpPop[i * nc + j].chrom += np.random.normal(0.0, delta, self.vardim)
# tmpPop[i * nc + j].chrom += alpha * np.random.random(
# self.vardim) * (self.best.chrom - tmpPop[i * nc +
# j].chrom)
for k in xrange(0, self.vardim):
if tmpPop[i * nc + j].chrom[k] < self.bound[0, k]:
tmpPop[i * nc + j].chrom[k] = self.bound[0, k]
if tmpPop[i * nc + j].chrom[k] > self.bound[1, k]:
tmpPop[i * nc + j].chrom[k] = self.bound[1, k]
tmpPop[i * nc + j].calculateFitness()
return tmpPop def selection(self, tmpPop):
'''
re-selection
'''
for i in xrange(0, self.sizepop):
nc = int(self.params[1] * self.sizepop)
best = 0.0
bestIndex = -1
for j in xrange(0, nc):
if tmpPop[i * nc + j].fitness > best:
best = tmpPop[i * nc + j].fitness
bestIndex = i * nc + j
if self.fitness[i] < best:
self.population[i] = copy.deepcopy(tmpPop[bestIndex])
self.fitness[i] = best def printResult(self):
'''
plot the result of clone selection algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Clone selection algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
csa = CSA(50, 25, bound, 500, [0.3, 0.4, 5, 0.1])
csa.solve()

ObjFunction见简单遗传算法-python实现

克隆选择算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. 测试杂感:Bug Bash

    缺陷大扫除(Bug Bash)是一项短期的全员测试活动.在微软,许多开发团队会在里程碑(milestone)的末期执行缺陷大扫除.程序员.测试员.程序经理.内部用户.市场人员在1~3天的时间窗口中,运 ...

  2. win10自动更新彻底关闭

    http://app.techweb.com.cn/wp/2016-10-24/2418646.shtml

  3. 【转】【C#】C# 不常用关键字

    1.__arglist 让我们先从__arglist开始. __arglist是用来给方法传送参数.通常我们是通过函数头部指定的参数列表给方法传递参数的.如果我们想要给方法传递一组新的参数,我们需要重 ...

  4. Discuz! X的CSS加载机制

    首先,每个页面都会加载以下两个css,data/cache/style_1_common.css和data/cache/style_1_forum_index.css.先讲讲这两个文件名的命名规则:第 ...

  5. Page Security

    参见开发文档 Overview This document describes how to build applications that grant selected access to indi ...

  6. Memcached通用类(基于enyim.com Memcached Client)

    一.如果用官方提供的方法,在web.config里面配置好了各个参数和服务器IP.如下图: <?xml version="1.0"?> <configuratio ...

  7. ViewConfiguration.getScaledTouchSlop () 用法

    getScaledTouchSlop是一个距离,表示滑动的时候,手的移动要大于这个距离才开始移动控件.如果小于这个距离就不触发移动控件,如viewpager就是用这个距离来判断用户是否翻页 ViewC ...

  8. OpenGL、Open Inventor、WebGL、Three.js、ARToolkit、JSARToolkit

    [准备看的] http://www.hewebgl.com/ http://www.linuxdiyf.com/viewarticle.php?id=399205 http://blog.sina.c ...

  9. 实验三实验报告 20135324&&20135330

    北京电子科技学院(BESTI) 实验报告 课程:深入理解计算机系统 班级:1353 姓名:张若嘉 杨舒雯 学号:20135330 20135324 成绩: 指导教师:娄嘉鹏 实验日期:2015.11. ...

  10. RedHat版的linux安装yum源及redis

    一.前言 最近正在学习redis,但是在安装redis的时候遇到很多坎,在此记录一下. 硬件环境:我用 VMware Workstation Pro 12 安装 Red Hat Enterprise ...