Problem 1049 - 斐波那契数
Time Limit: 1000MS   Memory Limit: 65536KB   Difficulty:
Total Submit: 1673  Accepted: 392  Special Judge: No
Description

斐波那契数列是如下的一个数列,0,1,1,2,3,5……,其通项公式为F(n)=F(n-1)+F(n-2),(n>=2) ,其中F(0)=0,F(1)=1,你的任务很简单,判定斐波契数列的第K项是否为偶数,如果是输出YES,否则输出NO

Input
第一行,T,表示有T个测试样例。
接下来T行,每行一个数据K(0<=K<=10^10000),表示要判定的是哪一项。
Output
如果第K项是偶数,输出YES,否则输出NO。
Sample Input
2
0
1
Sample Output
YES
NO
Hint

64-bit interger is not enough for 10^10000

Source
FZ
这么水的题为啥通过率25%都不到,好奇怪啊.
//0 1 1 0 1
#include<stdio.h>
#include<string.h>
int main()
{
char str[];
int T;
scanf("%d",&T);
while (T--)
{
scanf("%s",str);
int sum=,len=strlen(str),i;
for (i=;i<len;i++) sum+=str[i]-;
if (sum%==) printf("YES\n");
else printf("NO\n");
memset(str,,sizeof(str));
}
return ;
}

斐波那契数[XDU1049]的更多相关文章

  1. UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数

    大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...

  2. C++求斐波那契数

    题目内容:斐波那契数定义为:f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)(n>1且n为整数) 如果写出菲氏数列,则应该是: 0 1 1 2 3 5 8 13 21 34 …… ...

  3. Project Euler 104:Pandigital Fibonacci ends 两端为全数字的斐波那契数

    Pandigital Fibonacci ends The Fibonacci sequence is defined by the recurrence relation: F[n] = F[n-1 ...

  4. DP:斐波纳契数

    题目:输出第 n 个斐波纳契数(Fibonacci) 方法一.简单递归 这个就不说了,小n怡情,大n伤身啊……当n=40的时候,就明显感觉到卡了,不是一般的慢. //输出第n个 Fibonacci 数 ...

  5. HDU4549 M斐波那契数

    M斐波那契数列 题目分析: M斐波那契数列F[n]是一种整数数列,它的定义例如以下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 如今给 ...

  6. HDU 5914 Triangle(打表——斐波那契数的应用)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5914 Problem Description Mr. Frog has n sticks, whos ...

  7. [Swift]LeetCode509. 斐波那契数 | Fibonacci Number

    The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such th ...

  8. HDU 1021(斐波那契数与因子3 **)

    题意是说在给定的一种满足每一项等于前两项之和的数列中,判断第 n 项的数字是否为 3 的倍数. 斐波那契数在到第四十多位的时候就会超出 int 存储范围,但是题目问的是是否为 3 的倍数,也就是模 3 ...

  9. POJ 3070(求斐波那契数 矩阵快速幂)

    题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...

随机推荐

  1. Sql将逗号分隔的字符串分拆成表格的方法

    --拆分的方法有很多,临时表.SUBSTRING ...但都不如XML来得清凉爽快 ) set @tempstr='54,57,55,56,59' declare @Xmlstr xml set @X ...

  2. function foo(){}、(function(){})、(function(){}())等函数区别分析

    前面一段时间,看到(function(){}),(function(){}())这些函数就犯晕,不知道它到底是什么意思,为什么函数外要加小括号,函数后要加小括号,加和不加到底有什么区别……一直犯迷糊, ...

  3. Action的动态调用方法

    Action执行的时候并不一定要执行execute方法,我们可以指定Action执行哪个方法: 1. 方法一(通过methed属性指定执行方法): 可以在配置文件中配置Action的时候用method ...

  4. DCMTK354之VC++ 2008 MFC应用程序配置完整过程

    花了一个礼拜,终于在VC++2008 MFC 应用程序中完成了首个基于DCMTK354的首个程序ECHOSCUWIN32,现将过程记录下来,便于日后查阅,同时也提供给那些有幸看到此博文而对他们又有帮助 ...

  5. HDU1198水管并查集Farm Irrigation

    Benny has a spacious farm land to irrigate. The farm land is a rectangle, and is divided into a lot ...

  6. linux之eval用法(高级bash程序员的必修之技)

    1. eval command-line 其中command-line是在终端上键入的一条普通命令行.然而当在它前面放上eval时,其结果是shell在执行命令行之前扫描它两次.如: pipe=&qu ...

  7. linux下proc里关于磁盘性能的参数

    我 们在磁盘写操作持续繁忙的服务器上曾经碰到一个特殊的性能问题.每隔 30 秒,服务器就会遇到磁盘写活动高峰,导致请求处理延迟非常大(超过3秒).后来上网查了一下资料,通过调整内核参数,将写活动的高峰 ...

  8. KDD-CUP Proposal

    From 鞠源 已有 1303 次阅读 2012-11-25 21:09 |系统分类:科研笔记|关键词:会议 领域 justify 知识 KDDCUP - Competition is a stron ...

  9. java类的封装 继承 多态

    1.猜数字小游戏 package cn.jiemoxiaodi_02; import java.util.Scanner; /** * 猜数字小游戏 * * @author huli * */ pub ...

  10. spring mvc form表单提交乱码

    spring mvc form表单submit直接提交出现乱码.导致乱码一般是服务器端和页面之间编码不一致造成的.根据这一思路可以依次可以有以下方案. 1.jsp页面设置编码 <%@ page ...