POJ2115 C Looooops(线性同余方程)
无符号k位数溢出就相当于mod 2k,然后设循环x次A等于B,就可以列出方程:
$$ Cx+A \equiv B \pmod {2^k} $$ $$ Cx \equiv B-A \pmod {2^k} $$
最后就用扩展欧几里得算法求出这个线性同余方程的最小非负整数解。
#include<cstdio>
#include<cstring>
#define mod(x,y) (((x)%(y)+(y))%(y))
#define ll long long
ll exgcd(ll a,ll b,ll &x,ll &y){
if(b==){
x=; y=;
return a;
}
ll d=exgcd(b,a%b,x,y);
ll t=y;
y=x-a/b*y;
x=t;
return d;
}
ll MLES(ll a,ll b,ll n){
ll x,y;
ll d=exgcd(a,n,x,y);
if(b%d) return -;
return mod(x*(b/d),n/d);
}
int main(){
ll a,b,c,k;
while(~scanf("%lld%lld%lld%lld",&a,&b,&c,&k) && (a||b||c||k)){
k=1LL<<k;
ll res=MLES(c,b-a,k);
if(res==-) puts("FOREVER");
else printf("%lld\n",res);
}
return ;
}
POJ2115 C Looooops(线性同余方程)的更多相关文章
- poj2115-C Looooops -线性同余方程
线性同余方程的模板题.和青蛙的约会一样. #include <cstdio> #include <cstring> #define LL long long using nam ...
- POJ-2115-C Looooops(线性同余方程)
链接: https://vjudge.net/problem/POJ-2115 题意: A Compiler Mystery: We are given a C-language style for ...
- POJ2115:C Looooops(一元线性同余方程)
题目: http://poj.org/problem?id=2115 要求: 会求最优解,会求这d个解,即(x+(i-1)*b/d)modm;(看最后那个博客的链接地址) 前两天用二元一次线性方程解过 ...
- POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)
分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...
- POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...
- 数论 - n元线性同余方程的解法
note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念: 形如:(a1*x1+a2*x2+....+an*xn)%m=b%m ...
- POJ1061 青蛙的约会(线性同余方程)
线性同余方程$ ax \equiv b \pmod n$可以用扩展欧几里得算法求解. 这一题假设青蛙们跳t次后相遇,则可列方程: $$ Mt+X \equiv Nt+Y \pmod L$$ $$ (M ...
- poj2115 C Looooops(exgcd)
poj2115 C Looooops 题意: 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次才会结束. 若在有限次内结束,则输出循环次数. 否则输出死循环. ...
- 扩展欧几里得,解线性同余方程 逆元 poj1845
定理:对于任意整数a,b存在一堆整数x,y,满足ax+by=gcd(a,b) int exgcd(int a,int b,int &x,int &y){ ){x=,y=;return ...
随机推荐
- 黑色30s高并发IIS设置
在这篇博文中,我们抛开对阿里云的怀疑,完全从ASP.NET的角度进行分析,看能不能找到针对问题现象的更合理的解释. “黑色30秒”问题现象的主要特征是:排队的请求(Requests Queued)突增 ...
- 并发包之Future:代码级控制超时时间
先谢Doug Lea. 使用场景: 最近在做webservice调用的时候,发现一个问题,对方的webservice接口很不稳定,所以在获取的数据时候经常要等待很久才能把数据全部拉回来,甚至有时候直接 ...
- 第15章 使用Postfix与Dovecot收发电子邮件
章节概述: 本章节从电子邮局系统的组成角色开始讲起,了解MUA.MTA与MDA的作用,熟悉熟悉SMTP.POP3与IMAP4邮局协议. 学习postfix与dovecot服务程序的使用方法并逐条讲解配 ...
- Linux下更好用的帮助命令—cheat
导读 Linux系统中,我们经常会用man命令来帮助查看这个命令的具体用法,man是很强大的,但是英语不好的同学用man用起来可能不那么顺手,自然而然的就出现了cheat命令,cheat命令就是通过简 ...
- Unity3D占用内存太大的解决方法
原地址:http://www.cnblogs.com/88999660/archive/2013/03/15/2961663.html 最近网友通过网站搜索Unity3D在手机及其他平台下占用内存太大 ...
- 北工大耿丹学院16级计科院3班C语言课程助教学期总结
很荣幸得到邹老师,周老师,以及北工大耿丹学院各位老师的认可,担任计科院3班C语言课程助教,班主任为李光杰老师,很感谢李老师一学期的帮助,使得我更好的担任助教一职.我班学生31名,很愉快的与同学们度过一 ...
- java笔试二
16.同步和异步有何异同,在什么情况下分别使用他们?举例说明.如果数据将在线程间共享.例如正在写的数据以后可能被另一个线程读到,或者正在读的数据可能已经被另一个线程写过了,那么这些数据就是共享数据,必 ...
- digitalocean添加ssh_keys
链接为: https://cloud.digitalocean.com/settings/security
- 面向侧面的程序设计AOP-------《一》概述
Aspect-Oriented Programming(面向方面编程,AOP)正好可以解决这一问题.它允许开发者动态地修改静态的OO模型,构造出一个能够不断增长以满足新增需求的系统,就象现实世界中的对 ...
- 2013 ACM/ICPC 长春网络赛F题
题意:两个人轮流说数字,第一个人可以说区间[1~k]中的一个,之后每次每人都可以说一个比前一个人所说数字大一点的数字,相邻两次数字只差在区间[1~k].谁先>=N,谁输.问最后是第一个人赢还是第 ...