hdu5171(矩阵快速幂)
题意:GTY的朋友ZZF的生日要来了,GTY问他的基友送什么礼物比较好,他的一个基友说送一个可重集吧!于是GTY找到了一个可重集S,GTY能使用神犇魔法k次,每次可以向可重集中加入一个数 a+b(a,b∈S),现在GTY想最大化可重集的和,这个工作就交给你了。 注:可重集是指可以包含多个相同元素的集合
分析:想要和最大,那么每次必定从集合里面拿出最大的两个出来相加,然后k次后面就类似斐波那契数列了。
由斐波那契数列公式知:Fn=Fn-1+Fn-2,求和公式有Sn=Sn-1+Fn.因此用这两个公式构造矩阵,进行矩阵快速幂。
Sn-1 | 1 1 0| Sn
Fn * | 0 1 1| =Fn+1
Fn-1 | 0 1 0| Fn
然后ans=(Sn+(sum-a[n-1]-a[n-2]))%mod(sum为原集合总和,然后减去最大的两个,加上k次后的序列之和(即斐波那契数列和))。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 10000007
#define inf 0x3f3f3f3f
#define N 40010
#define clr(a) (memset(a,0,sizeof(a)))
using namespace std;
struct matrix
{
LL m[][];
};
LL a[];
matrix mult(matrix a,matrix b)
{
matrix c;
memset(c.m,,sizeof(c.m));
for(int i=;i<;i++)
for(int j=;j<;j++)
{
if(a.m[i][j]==)continue;
for(int k=;k<;k++)
{
if(b.m[j][k]==)continue;
c.m[i][k]+=a.m[i][j]*b.m[j][k]%mod;
c.m[i][k]%=mod;
}
}
return c;
}
matrix quickmod(matrix a,int n)
{
matrix temp;
memset(temp.m,,sizeof(temp.m));
for(int i=;i<=;i++)temp.m[i][i]=;
while(n)
{
if(n&)temp=mult(temp,a);
a=mult(a,a);
n/=;
}
return temp;
}
int main()
{
LL n,k;
while(scanf("%I64d%I64d",&n,&k)>)
{
LL sum=;
for(int i=;i<n;i++)scanf("%I64d",&a[i]),sum+=a[i];
sort(a,a+n);
matrix ans;
ans.m[][]=;ans.m[][]=;ans.m[][]=;
ans.m[][]=;ans.m[][]=;ans.m[][]=;
ans.m[][]=;ans.m[][]=;ans.m[][]=;
ans=quickmod(ans,k+);
printf("%I64d\n",(1LL*ans.m[][]*a[n-]+1LL*ans.m[][]*a[n-]+1LL*ans.m[][]*a[n-]+sum-(a[n-]+a[n-]))%mod);
}
}
hdu5171(矩阵快速幂)的更多相关文章
- HDU5171 矩阵快速幂
题目描述:http://acm.hdu.edu.cn/showproblem.php?pid=5171 算法: 可以先将数组a[]排序,然后序列 a1 , a2 , … , an 即为有序序列,则第一 ...
- BZOJ4547 Hdu5171 小奇的集合 【矩阵快速幂优化递推】
BZOJ4547 Hdu5171 小奇的集合 Description 有一个大小为n的可重集S,小奇每次操作可以加入一个数a+b(a,b均属于S),求k次操作后它可获得的S的和的最大值.(数据保证这个 ...
- HDU5171 GTY's birthday gift —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5171 GTY's birthday gift Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 5171 GTY's birthday gift 矩阵快速幂
GTY's birthday gift Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
- BC#29A:GTY's math problem(math) B:GTY's birthday gift(矩阵快速幂)
A: HDU5170 这题让比较a^b与c^d的大小.1<=a,b,c,d<=1000. 显然这题没法直接做,要利用对数来求,但是在math库中有关的对数函数返回的都是浮点数,所以这又要涉 ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
随机推荐
- C#的静态构造函数
“静态构造函数”典型应用于第一次使用类时的初始化工作,注意“第一次”,意思是它只执行一次. 有同学说了,类的初始化不是有构造函数嘛?我们回答:构造函数是每个实例被声明时都会执行的,它属于每一个实例,而 ...
- cocos2d-x 制作资源下载页面
开发游戏中用到从http 服务器下载文件的操作,所以要有个界面显示下载进度,同时联网采用curl库,因为下载是同步的操作,所以用了多线程 啥也不说,直接贴代码.我是采用ccbi做的页面,你也可以做一个 ...
- Linux下搭建Hadoop具体步骤
装好虚拟机+Linux.而且主机网络和虚拟机网络互通. 以及Linux上装好JDK 1:在Linux下输入命令vi /etc/profile 加入HADOOP_HOME export JAVA_HOM ...
- Stack栈的三种含义
理解stack栈对于理解程序的执行至关重要.easy混淆的是,这个词事实上有三种含义,适用于不同的场合,必须加以区分. 含义一:数据结构 stack的第一种含义是一组数据的存放方式,特点为LIFO,即 ...
- Hadoop2.0/YARN深入浅出(Hadoop2.0、Spark、Storm和Tez)
随着云计算.大数据迅速发展,亟需用hadoop解决大数据量高并发访问的瓶颈.谷歌.淘宝.百度.京东等底层都应用hadoop.越来越多的企 业急需引入hadoop技术人才.由于掌握Hadoop技术的开发 ...
- 基于visual Studio2013解决C语言竞赛题之1086任务分配
题目 解决代码及点评 /************************************************************************/ /* ...
- Swift - iCloud存储介绍
对于开发者而言,涉及iCloud存储的功能主要有两个: 一是 iCloud documnet storage,利用 iCloud 存储用户文件,比如保存一些用户在使用应用时生成的文件以及数据库文件等. ...
- OpenCV Python教程(3、直方图的计算与显示)
转载请详细注明原作者及出处,谢谢! 本篇文章介绍如何用OpenCV Python来计算直方图,并简略介绍用NumPy和Matplotlib计算和绘制直方图 直方图的背景知识.用途什么的就直接略过去了. ...
- shakes hands
Description On February, 30th n students came in the Center for Training Olympiad Programmers (CTOP) ...
- Beautiful Soup 中文文档
Beautiful Soup 3.0 中文文档说明: http://www.crummy.com/software/BeautifulSoup/bs3/documentation.zh.html Be ...