hdu-5794 A Simple Chess(容斥+lucas+dp)
题目链接:
A Simple Chess
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 65536/65536 K (Java/Others)
(n,m) from the position (1,1).
The chess is able to go to position (x2,y2) from the position (x1,y1), only and if only x1,y1,x2,y2 is satisfied that (x2−x1)2+(y2−y1)2=5, x2>x1, y2>y1.
Unfortunately, there are some obstacles on the board. And the chess never can stay on the grid where has a obstacle.
I want you to tell me, There are how may ways the chess can achieve its goal.
For each test case:
The first line is three integers, n,m,r,(1≤n,m≤1018,0≤r≤100), denoting the height of the board, the weight of the board, and the number of the obstacles on the board.
Then follow r lines, each lines have two integers, x,y(1≤x≤n,1≤y≤m), denoting the position of the obstacles. please note there aren't never a obstacles at position (1,1).
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=110119;
const int maxn=110;
LL n,m,x[maxn],y[maxn],dp[maxn],p[110130];
int r;
inline void init()
{
p[0]=1;
for(int i=1;i<=110119;i++)p[i]=p[i-1]*(LL)i%mod;
}
LL pow_mod(LL a,LL b)
{
LL s=1,base=a;
while(b)
{
if(b&1)s=s*base%mod;
base=base*base%mod;
b>>=1;
}
return s;
}
LL cal(LL a,LL b)
{
if(a<mod&&b<mod)
{
if(b>a)return 0;
return p[a]*pow_mod(p[b],mod-2)%mod*pow_mod(p[a-b],mod-2)%mod;
}
return cal(a/mod,b/mod)*cal(a%mod,b%mod)%mod;
}
LL solve(int L,int R)
{
LL fx=x[R]-x[L],fy=y[R]-y[L];
if((2*fy-fx)%3||(2*fx-fy)%3||2*fy<fx||2*fx<fy)return 0;
LL up=(2*fy-fx)/3,down=(fx+fy)/3;
return cal(down,up);
}
int main()
{
init();
int Case=0;
while(scanf("%lld%lld%d",&n,&m,&r)!=EOF)
{
memset(dp,0,sizeof(dp));
int flag=0;
x[0]=1,y[0]=1;
for(int i=1;i<=r;i++)
{
scanf("%lld%lld",&x[i],&y[i]);
if(x[i]==n&&y[i]==m)flag=1;
}
LL ans=0;
if(!flag)
{
x[0]=1,y[0]=1;
dp[0]=1;
x[++r]=n,y[r]=m;
for(int i=1;i<=r;i++)
{
for(int j=1;j<=i;j++)
{
if(x[j]>=x[i]&&y[j]>=y[i])swap(x[i],x[j]),swap(y[i],y[j]);
}
}
for(int i=1;i<=r;i++)dp[i]=solve(0,i);
for(int i=1;i<=r;i++)
{
for(int j=1;j<i;j++)
{
if(x[j]<=x[i]&&y[j]<=y[i])dp[i]=(dp[i]-dp[j]*solve(j,i)%mod+mod)%mod;
}
}
for(int i=1;i<=r;i++)if(x[i]==n&&y[i]==m)ans=dp[i];
}
printf("Case #%d: %lld\n",++Case,ans);
}
return 0;
}
hdu-5794 A Simple Chess(容斥+lucas+dp)的更多相关文章
- hdu5794 A Simple Chess 容斥+Lucas 从(1,1)开始出发,每一步从(x1,y1)到达(x2,y2)满足(x2−x1)^2+(y2−y1)^2=5, x2>x1,y2>y1; 其实就是走日字。而且是往(n,m)方向走的日字。还有r个障碍物,障碍物不可以到达。求(1,1)到(n,m)的路径条数。
A Simple Chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- HDU5794 A Simple Chess 容斥+lucas
分析:转自http://blog.csdn.net/mengzhengnan/article/details/47031777 一点感想:其实这个题应该是可以想到的,但是赛场上并不会 dp[i]的定义 ...
- HDU 5794 - A Simple Chess
HDU 5794 - A Simple Chess题意: 马(象棋)初始位置在(1,1), 现在要走到(n,m), 问有几种走法 棋盘上有r个障碍物, 该位置不能走, 并规定只能走右下方 数据范围: ...
- HDU 5794 A Simple Chess dp+Lucas
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 A Simple Chess Time Limit: 2000/1000 MS (Java/O ...
- HDU 5794 A Simple Chess (容斥+DP+Lucas)
A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...
- HDU 5794 A Simple Chess(杨辉三角+容斥原理+Lucas定理)
题目链接 A Simple Chess 打表发现这其实是一个杨辉三角…… 然后发现很多格子上方案数都是0 对于那写可能可以到达的点(先不考虑障碍点),我们先叫做有效的点 对于那些障碍,如果不在有效点上 ...
- HDU 5794 A Simple Chess ——(Lucas + 容斥)
网上找了很多人的博客,都看不太懂,还是大力学长的方法好. 要说明的一点是,因为是比较大的数字的组合数再加上mod比较小,因此用Lucas定理求组合数. 代码如下(有注释): #include < ...
- HDU 5794 A Simple Chess (Lucas + dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 多校这题转化一下模型跟cf560E基本一样,可以先做cf上的这个题. 题目让你求一个棋子开始在( ...
- HDU 5794 A Simple Chess Lucas定理+dp
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 题意概述: 给出一个N*M的网格.网格上有一些点是障碍,不能经过.行走的方式是向右下角跳马步.求 ...
随机推荐
- List<T>集合导出csv方法参考,通过增加自定义的属性控制输出的字段。
public string CreateAdvExcel(List<GridScoreManager> lt) { StringBuilder builder = new StringBu ...
- centos7下用yum安装mysql5.7
1.安装mysql源 下载地址:http://dev.mysql.com/downloads/repo/yum/ 下载之后用yum安装:yum localinstall -y xx.noarch.rp ...
- MySQL的备份和恢复
MySQL的备份和恢复 备份数据:mysqldump –uroot –p123456 dbname table [option] > dbname.sql mysqldump常用参数option ...
- hibernate异常:org.hibernate.MappingException
这个是映射文件配置错误 异常:org.hibernate.MappingException 提示:Could not determine type for: java.lang,String, at ...
- Deploy Django in Windows
配置 安装目录 D:\PythonWebSW\(免安装) d:\Program Files\ (安装版) 工作目录 E:/PythonWeb/code 项目名称 voith_sales Insta ...
- vc6.0调试
调试快捷键 : 逐过程调试-F10 逐语句调试-F11跳到光标处-Ctrl+F10 跳出本循环-Shift+F11 设定断点-F9 删除所有断点-Ctrl+Shift+F9 ...
- Linux服务器操作系统
Linux服务器操作系统 今日大纲 ● 服务器操作系统的系列.Linux的主流产品.虚拟机软件 ● 安装linux ● linux基本命令 ● 用户管理及权限(多用户) ● ...
- iOS上传图片详解
iphone中图像通常存储在4个地方[相册.应用程序包.沙盒.Internet],通过这4个源,我们就可以存取应用图片. 相册 iphone的相册包含摄像头胶卷+用户计算机同步的部分照片.用户可以通过 ...
- C#获取网页内容 (WebClient、WebBrowser和HttpWebRequest/HttpWebResponse)
获取网页数据有很多种方式.在这里主要讲述通过WebClient.WebBrowser和HttpWebRequest/HttpWebResponse三种方式获取网页内容. 这里获取的是包括网页的所有信息 ...
- JS复习:第三章&第四章
第三章 一.把一个值转换成字符串的两种方法: 1.使用每个值都有的toString( )方法.这个方法唯一要做的就是返回相应值的字符串表现.例如: var age = 11 ; var ageAsSt ...