题目链接:

A Simple Chess

Time Limit: 2000/1000 MS (Java/Others)   

 Memory Limit: 65536/65536 K (Java/Others)

Problem Description
There is a n×m board, a chess want to go to the position 
(n,m) from the position (1,1).
The chess is able to go to position (x2,y2) from the position (x1,y1), only and if only x1,y1,x2,y2 is satisfied that (x2−x1)2+(y2−y1)2=5, x2>x1, y2>y1.
Unfortunately, there are some obstacles on the board. And the chess never can stay on the grid where has a obstacle.
I want you to tell me, There are how may ways the chess can achieve its goal.
 
Input
The input consists of multiple test cases.
For each test case:
The first line is three integers, n,m,r,(1≤n,m≤1018,0≤r≤100), denoting the height of the board, the weight of the board, and the number of the obstacles on the board.
Then follow r lines, each lines have two integers, x,y(1≤x≤n,1≤y≤m), denoting the position of the obstacles. please note there aren't never a obstacles at position (1,1).
 
Output
For each test case,output a single line "Case #x: y", where x is the case number, starting from 1. And y is the answer after module 110119.
 
Sample Input
 
1 1 0
3 3 0
4 4 1
2 1
4 4 1
3 2
7 10 2
1 2
7 1
 
Sample Output
 
Case #1: 1
Case #2: 0
Case #3: 2
Case #4: 1
Case #5: 5
 
 
题意:
 
走日字从(1,1)到(n,m)且不经过障碍的方案数;
 
思路:
 
原来向下和向右移动的方案数是C(n+m,m),这个是先把日字变成原来熟悉的走法,可以画个图研究一下,最后发现是(0,0)到(2*fy-fx/3,2*fx-fy/3)的方案数
不经过障碍可以用容斥加dp解决,dp[i]表示从起点到达第i个点中间不经过障碍点的方案数,那么dp[i]=起点到达i的总方案数-∑dp[j]*(j点到达i点的总方案数)
还有就是要预处理出阶乘,同时n和m都太大要用lucas定理化简,C(n,m)%mod=C(n/mod,m/mod)*C(n%mod,m%mod)%mod;
 
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=110119;
const int maxn=110;
LL n,m,x[maxn],y[maxn],dp[maxn],p[110130];
int r;
inline void init()
{
p[0]=1;
for(int i=1;i<=110119;i++)p[i]=p[i-1]*(LL)i%mod;
}
LL pow_mod(LL a,LL b)
{
LL s=1,base=a;
while(b)
{
if(b&1)s=s*base%mod;
base=base*base%mod;
b>>=1;
}
return s;
}
LL cal(LL a,LL b)
{
if(a<mod&&b<mod)
{
if(b>a)return 0;
return p[a]*pow_mod(p[b],mod-2)%mod*pow_mod(p[a-b],mod-2)%mod;
}
return cal(a/mod,b/mod)*cal(a%mod,b%mod)%mod;
}
LL solve(int L,int R)
{
LL fx=x[R]-x[L],fy=y[R]-y[L];
if((2*fy-fx)%3||(2*fx-fy)%3||2*fy<fx||2*fx<fy)return 0;
LL up=(2*fy-fx)/3,down=(fx+fy)/3;
return cal(down,up);
}
int main()
{
init();
int Case=0;
while(scanf("%lld%lld%d",&n,&m,&r)!=EOF)
{
memset(dp,0,sizeof(dp));
int flag=0;
x[0]=1,y[0]=1;
for(int i=1;i<=r;i++)
{
scanf("%lld%lld",&x[i],&y[i]);
if(x[i]==n&&y[i]==m)flag=1;
}
LL ans=0;
if(!flag)
{
x[0]=1,y[0]=1;
dp[0]=1;
x[++r]=n,y[r]=m;
for(int i=1;i<=r;i++)
{
for(int j=1;j<=i;j++)
{
if(x[j]>=x[i]&&y[j]>=y[i])swap(x[i],x[j]),swap(y[i],y[j]);
}
}
for(int i=1;i<=r;i++)dp[i]=solve(0,i);
for(int i=1;i<=r;i++)
{
for(int j=1;j<i;j++)
{
if(x[j]<=x[i]&&y[j]<=y[i])dp[i]=(dp[i]-dp[j]*solve(j,i)%mod+mod)%mod;
}
}
for(int i=1;i<=r;i++)if(x[i]==n&&y[i]==m)ans=dp[i];
}
printf("Case #%d: %lld\n",++Case,ans);
}
return 0;
}

  

 

hdu-5794 A Simple Chess(容斥+lucas+dp)的更多相关文章

  1. hdu5794 A Simple Chess 容斥+Lucas 从(1,1)开始出发,每一步从(x1,y1)到达(x2,y2)满足(x2−x1)^2+(y2−y1)^2=5, x2>x1,y2>y1; 其实就是走日字。而且是往(n,m)方向走的日字。还有r个障碍物,障碍物不可以到达。求(1,1)到(n,m)的路径条数。

    A Simple Chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  2. HDU5794 A Simple Chess 容斥+lucas

    分析:转自http://blog.csdn.net/mengzhengnan/article/details/47031777 一点感想:其实这个题应该是可以想到的,但是赛场上并不会 dp[i]的定义 ...

  3. HDU 5794 - A Simple Chess

    HDU 5794 - A Simple Chess题意: 马(象棋)初始位置在(1,1), 现在要走到(n,m), 问有几种走法 棋盘上有r个障碍物, 该位置不能走, 并规定只能走右下方 数据范围: ...

  4. HDU 5794 A Simple Chess dp+Lucas

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 A Simple Chess Time Limit: 2000/1000 MS (Java/O ...

  5. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

  6. HDU 5794 A Simple Chess(杨辉三角+容斥原理+Lucas定理)

    题目链接 A Simple Chess 打表发现这其实是一个杨辉三角…… 然后发现很多格子上方案数都是0 对于那写可能可以到达的点(先不考虑障碍点),我们先叫做有效的点 对于那些障碍,如果不在有效点上 ...

  7. HDU 5794 A Simple Chess ——(Lucas + 容斥)

    网上找了很多人的博客,都看不太懂,还是大力学长的方法好. 要说明的一点是,因为是比较大的数字的组合数再加上mod比较小,因此用Lucas定理求组合数. 代码如下(有注释): #include < ...

  8. HDU 5794 A Simple Chess (Lucas + dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 多校这题转化一下模型跟cf560E基本一样,可以先做cf上的这个题. 题目让你求一个棋子开始在( ...

  9. HDU 5794 A Simple Chess Lucas定理+dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 题意概述: 给出一个N*M的网格.网格上有一些点是障碍,不能经过.行走的方式是向右下角跳马步.求 ...

随机推荐

  1. 显示hibernate的sql语句

    <property name="show_sql">true</property> <property name="format_sql&q ...

  2. Python爬虫----Beautiful Soup4 基础

    1. Beautiful Soup简介 简单来说,Beautiful Soup是python的一个库,最主要的功能是从网页抓取数据.官方解释如下: Beautiful Soup提供一些简单的.pyth ...

  3. mybatis处理特殊符号

    当我们需要通过xml格式处理sql语句时,经常会用到< ,<=,>,>=等符号,但是很容易引起xml格式的错误,这样会导致后台将xml字符串转换为xml文档时报错,从而导致程序 ...

  4. Git忽略对特定文件的跟踪和提交

    1.有未提交过的文件,并且此文件项目组中的其他人员也需要忽略,可将此文件的完整路径写入项目文件夹下的.gitignore文件. 2.有未提交过的文件,此这些文件与项目组中的其他人员无关,毋须写入.gi ...

  5. 【.NET】XML文件的创建,修改,删除

    类名:XML /// 1.创建XML文档 /// 2.在根节点下增加子元素 /// 3.在元素下增加子元素 /// 4.获取类型为制定值的一组节点 /// 5.抓取网页上的xml文档赋值给XmlDoc ...

  6. SpringMVC之ModelAndView的简单使用

    可以使用ModelAndView来跳转页面和传值,具体用法如下: 构造方法的参数是要跳转的页面! 通过 ModelAndView 的对象的 AddObject(K,V)方法,可以传入数据! 获得mod ...

  7. Oracle截取某字段前后字符串

    创建测试表及数据 1 2 3 4 5 6 7 8 9 create table test (name varchar2(10));   insert into test values ('2-15') ...

  8. Asp.net MVC 单元测试 简要笔记

    首先要啰嗦几句. 单元测试是TDD的重要实践方法,也是代码质量的一种保证手段.在项目的工程化开发中,研发人员应该尽量保证书写Unit Test,即使不使用TDD. (VS中,我们可以直接使用微软提供的 ...

  9. ggplot2 theme相关设置—文本调整

    在geom设置和scale设置之后,要想把图画的漂亮,theme设置是比不可少的 在theme 设置中element_text()是一项很重要的内容 element_text(family = NUL ...

  10. hdu_5507_GT and strings(AC自动机)

    题目链接:hdu_5507_GT and strings 题意:给n个字符串和q个询问,每个询问给两个数字x,y,问1.x是否为y的子序列,2.x是否为y的子串,是输出1,否则输出0,每个询问输出2个 ...