题目链接:

A Simple Chess

Time Limit: 2000/1000 MS (Java/Others)   

 Memory Limit: 65536/65536 K (Java/Others)

Problem Description
There is a n×m board, a chess want to go to the position 
(n,m) from the position (1,1).
The chess is able to go to position (x2,y2) from the position (x1,y1), only and if only x1,y1,x2,y2 is satisfied that (x2−x1)2+(y2−y1)2=5, x2>x1, y2>y1.
Unfortunately, there are some obstacles on the board. And the chess never can stay on the grid where has a obstacle.
I want you to tell me, There are how may ways the chess can achieve its goal.
 
Input
The input consists of multiple test cases.
For each test case:
The first line is three integers, n,m,r,(1≤n,m≤1018,0≤r≤100), denoting the height of the board, the weight of the board, and the number of the obstacles on the board.
Then follow r lines, each lines have two integers, x,y(1≤x≤n,1≤y≤m), denoting the position of the obstacles. please note there aren't never a obstacles at position (1,1).
 
Output
For each test case,output a single line "Case #x: y", where x is the case number, starting from 1. And y is the answer after module 110119.
 
Sample Input
 
1 1 0
3 3 0
4 4 1
2 1
4 4 1
3 2
7 10 2
1 2
7 1
 
Sample Output
 
Case #1: 1
Case #2: 0
Case #3: 2
Case #4: 1
Case #5: 5
 
 
题意:
 
走日字从(1,1)到(n,m)且不经过障碍的方案数;
 
思路:
 
原来向下和向右移动的方案数是C(n+m,m),这个是先把日字变成原来熟悉的走法,可以画个图研究一下,最后发现是(0,0)到(2*fy-fx/3,2*fx-fy/3)的方案数
不经过障碍可以用容斥加dp解决,dp[i]表示从起点到达第i个点中间不经过障碍点的方案数,那么dp[i]=起点到达i的总方案数-∑dp[j]*(j点到达i点的总方案数)
还有就是要预处理出阶乘,同时n和m都太大要用lucas定理化简,C(n,m)%mod=C(n/mod,m/mod)*C(n%mod,m%mod)%mod;
 
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=110119;
const int maxn=110;
LL n,m,x[maxn],y[maxn],dp[maxn],p[110130];
int r;
inline void init()
{
p[0]=1;
for(int i=1;i<=110119;i++)p[i]=p[i-1]*(LL)i%mod;
}
LL pow_mod(LL a,LL b)
{
LL s=1,base=a;
while(b)
{
if(b&1)s=s*base%mod;
base=base*base%mod;
b>>=1;
}
return s;
}
LL cal(LL a,LL b)
{
if(a<mod&&b<mod)
{
if(b>a)return 0;
return p[a]*pow_mod(p[b],mod-2)%mod*pow_mod(p[a-b],mod-2)%mod;
}
return cal(a/mod,b/mod)*cal(a%mod,b%mod)%mod;
}
LL solve(int L,int R)
{
LL fx=x[R]-x[L],fy=y[R]-y[L];
if((2*fy-fx)%3||(2*fx-fy)%3||2*fy<fx||2*fx<fy)return 0;
LL up=(2*fy-fx)/3,down=(fx+fy)/3;
return cal(down,up);
}
int main()
{
init();
int Case=0;
while(scanf("%lld%lld%d",&n,&m,&r)!=EOF)
{
memset(dp,0,sizeof(dp));
int flag=0;
x[0]=1,y[0]=1;
for(int i=1;i<=r;i++)
{
scanf("%lld%lld",&x[i],&y[i]);
if(x[i]==n&&y[i]==m)flag=1;
}
LL ans=0;
if(!flag)
{
x[0]=1,y[0]=1;
dp[0]=1;
x[++r]=n,y[r]=m;
for(int i=1;i<=r;i++)
{
for(int j=1;j<=i;j++)
{
if(x[j]>=x[i]&&y[j]>=y[i])swap(x[i],x[j]),swap(y[i],y[j]);
}
}
for(int i=1;i<=r;i++)dp[i]=solve(0,i);
for(int i=1;i<=r;i++)
{
for(int j=1;j<i;j++)
{
if(x[j]<=x[i]&&y[j]<=y[i])dp[i]=(dp[i]-dp[j]*solve(j,i)%mod+mod)%mod;
}
}
for(int i=1;i<=r;i++)if(x[i]==n&&y[i]==m)ans=dp[i];
}
printf("Case #%d: %lld\n",++Case,ans);
}
return 0;
}

  

 

hdu-5794 A Simple Chess(容斥+lucas+dp)的更多相关文章

  1. hdu5794 A Simple Chess 容斥+Lucas 从(1,1)开始出发,每一步从(x1,y1)到达(x2,y2)满足(x2−x1)^2+(y2−y1)^2=5, x2>x1,y2>y1; 其实就是走日字。而且是往(n,m)方向走的日字。还有r个障碍物,障碍物不可以到达。求(1,1)到(n,m)的路径条数。

    A Simple Chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  2. HDU5794 A Simple Chess 容斥+lucas

    分析:转自http://blog.csdn.net/mengzhengnan/article/details/47031777 一点感想:其实这个题应该是可以想到的,但是赛场上并不会 dp[i]的定义 ...

  3. HDU 5794 - A Simple Chess

    HDU 5794 - A Simple Chess题意: 马(象棋)初始位置在(1,1), 现在要走到(n,m), 问有几种走法 棋盘上有r个障碍物, 该位置不能走, 并规定只能走右下方 数据范围: ...

  4. HDU 5794 A Simple Chess dp+Lucas

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 A Simple Chess Time Limit: 2000/1000 MS (Java/O ...

  5. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

  6. HDU 5794 A Simple Chess(杨辉三角+容斥原理+Lucas定理)

    题目链接 A Simple Chess 打表发现这其实是一个杨辉三角…… 然后发现很多格子上方案数都是0 对于那写可能可以到达的点(先不考虑障碍点),我们先叫做有效的点 对于那些障碍,如果不在有效点上 ...

  7. HDU 5794 A Simple Chess ——(Lucas + 容斥)

    网上找了很多人的博客,都看不太懂,还是大力学长的方法好. 要说明的一点是,因为是比较大的数字的组合数再加上mod比较小,因此用Lucas定理求组合数. 代码如下(有注释): #include < ...

  8. HDU 5794 A Simple Chess (Lucas + dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 多校这题转化一下模型跟cf560E基本一样,可以先做cf上的这个题. 题目让你求一个棋子开始在( ...

  9. HDU 5794 A Simple Chess Lucas定理+dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 题意概述: 给出一个N*M的网格.网格上有一些点是障碍,不能经过.行走的方式是向右下角跳马步.求 ...

随机推荐

  1. Chorme 快捷键

    掌握谷歌浏览器的快捷键,能提升一定的使用效率. Windows 和 Linux 标签页和窗口快捷键 操作 快捷键 打开新窗口 Ctrl + n 在隐身模式下打开新窗口 Ctrl + Shift + n ...

  2. PHP奇怪现象

    <?php $a = 0.29; $b = (int)($a*100); echo $b; //输出28,PHP版本5.6.24 echo 0.1 + 0.2 - 0.3; //输出5.5511 ...

  3. Linux Yum仓库介绍及服务端及客户端配置

    YUM服务器 适合在于内网使用,因为很多包需要国外的网站下载应用包,这样网络很不稳定 下载慢,所有为何不尝试搭建 自己内部的YUM服务器呢 YUM服务器搭建 一 创建yum仓库目录 #mkdir -p ...

  4. React学习笔记-03 state

    每一个组件都有状态,比如一个开关,开 和 关,都是一种state.那么react是怎么管理它的state的? React 把用户界面当做状态机,可以轻松的让用户界面和数据保持一致.用户只需要更新组件的 ...

  5. 【c++】size_t 和 size_type的区别

    为了使自己的程序有很好的移植性,c++程序员应该尽量使用size_t和size_type而不是int, unsigned 1. size_t是全局定义的类型:size_type是STL类中定义的类型属 ...

  6. 使用JS通过正则限制input的输入

    第一: 限制只能是整数 type = "text" name= "number" id = 'number' onkeyup= "if(! /^d+$ ...

  7. java中字符串的操作

    //创建一个字符数组 char[] charArr = {'a','b','c','d','e','f','g'}; //创建一个字符串 String str = new String(charArr ...

  8. ajaxFileUpload 报这错jQuery.handleError is not a function

    今天刚打个一个技术群,里面有人问标题上的问题,嘿,我恰好遇过,现在大家至少也在用jquery1.9以上的版本,ajaxfileupload的版本早就不更新了,大家可以下载看:地址这里, 它例子里使用的 ...

  9. 老oj1965:polygon半平面交

    题目链接:http://192.168.2.240:8080/JudgeOnline/showproblem?problem_id=1965 polygon半平面交 Time Limit:1000MS ...

  10. hdu_5314_Happy King(树的点分治)

    题目链接:hdu_5314_Happy King 题意: 给出一颗n个结点的树,点上有权值: 求点对(x,y)满足x!=y且x到y的路径上最大值与最小值的差<=D: 题解: 还是树的点分治,在统 ...