题目链接:

A Simple Chess

Time Limit: 2000/1000 MS (Java/Others)   

 Memory Limit: 65536/65536 K (Java/Others)

Problem Description
There is a n×m board, a chess want to go to the position 
(n,m) from the position (1,1).
The chess is able to go to position (x2,y2) from the position (x1,y1), only and if only x1,y1,x2,y2 is satisfied that (x2−x1)2+(y2−y1)2=5, x2>x1, y2>y1.
Unfortunately, there are some obstacles on the board. And the chess never can stay on the grid where has a obstacle.
I want you to tell me, There are how may ways the chess can achieve its goal.
 
Input
The input consists of multiple test cases.
For each test case:
The first line is three integers, n,m,r,(1≤n,m≤1018,0≤r≤100), denoting the height of the board, the weight of the board, and the number of the obstacles on the board.
Then follow r lines, each lines have two integers, x,y(1≤x≤n,1≤y≤m), denoting the position of the obstacles. please note there aren't never a obstacles at position (1,1).
 
Output
For each test case,output a single line "Case #x: y", where x is the case number, starting from 1. And y is the answer after module 110119.
 
Sample Input
 
1 1 0
3 3 0
4 4 1
2 1
4 4 1
3 2
7 10 2
1 2
7 1
 
Sample Output
 
Case #1: 1
Case #2: 0
Case #3: 2
Case #4: 1
Case #5: 5
 
 
题意:
 
走日字从(1,1)到(n,m)且不经过障碍的方案数;
 
思路:
 
原来向下和向右移动的方案数是C(n+m,m),这个是先把日字变成原来熟悉的走法,可以画个图研究一下,最后发现是(0,0)到(2*fy-fx/3,2*fx-fy/3)的方案数
不经过障碍可以用容斥加dp解决,dp[i]表示从起点到达第i个点中间不经过障碍点的方案数,那么dp[i]=起点到达i的总方案数-∑dp[j]*(j点到达i点的总方案数)
还有就是要预处理出阶乘,同时n和m都太大要用lucas定理化简,C(n,m)%mod=C(n/mod,m/mod)*C(n%mod,m%mod)%mod;
 
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=110119;
const int maxn=110;
LL n,m,x[maxn],y[maxn],dp[maxn],p[110130];
int r;
inline void init()
{
p[0]=1;
for(int i=1;i<=110119;i++)p[i]=p[i-1]*(LL)i%mod;
}
LL pow_mod(LL a,LL b)
{
LL s=1,base=a;
while(b)
{
if(b&1)s=s*base%mod;
base=base*base%mod;
b>>=1;
}
return s;
}
LL cal(LL a,LL b)
{
if(a<mod&&b<mod)
{
if(b>a)return 0;
return p[a]*pow_mod(p[b],mod-2)%mod*pow_mod(p[a-b],mod-2)%mod;
}
return cal(a/mod,b/mod)*cal(a%mod,b%mod)%mod;
}
LL solve(int L,int R)
{
LL fx=x[R]-x[L],fy=y[R]-y[L];
if((2*fy-fx)%3||(2*fx-fy)%3||2*fy<fx||2*fx<fy)return 0;
LL up=(2*fy-fx)/3,down=(fx+fy)/3;
return cal(down,up);
}
int main()
{
init();
int Case=0;
while(scanf("%lld%lld%d",&n,&m,&r)!=EOF)
{
memset(dp,0,sizeof(dp));
int flag=0;
x[0]=1,y[0]=1;
for(int i=1;i<=r;i++)
{
scanf("%lld%lld",&x[i],&y[i]);
if(x[i]==n&&y[i]==m)flag=1;
}
LL ans=0;
if(!flag)
{
x[0]=1,y[0]=1;
dp[0]=1;
x[++r]=n,y[r]=m;
for(int i=1;i<=r;i++)
{
for(int j=1;j<=i;j++)
{
if(x[j]>=x[i]&&y[j]>=y[i])swap(x[i],x[j]),swap(y[i],y[j]);
}
}
for(int i=1;i<=r;i++)dp[i]=solve(0,i);
for(int i=1;i<=r;i++)
{
for(int j=1;j<i;j++)
{
if(x[j]<=x[i]&&y[j]<=y[i])dp[i]=(dp[i]-dp[j]*solve(j,i)%mod+mod)%mod;
}
}
for(int i=1;i<=r;i++)if(x[i]==n&&y[i]==m)ans=dp[i];
}
printf("Case #%d: %lld\n",++Case,ans);
}
return 0;
}

  

 

hdu-5794 A Simple Chess(容斥+lucas+dp)的更多相关文章

  1. hdu5794 A Simple Chess 容斥+Lucas 从(1,1)开始出发,每一步从(x1,y1)到达(x2,y2)满足(x2−x1)^2+(y2−y1)^2=5, x2>x1,y2>y1; 其实就是走日字。而且是往(n,m)方向走的日字。还有r个障碍物,障碍物不可以到达。求(1,1)到(n,m)的路径条数。

    A Simple Chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  2. HDU5794 A Simple Chess 容斥+lucas

    分析:转自http://blog.csdn.net/mengzhengnan/article/details/47031777 一点感想:其实这个题应该是可以想到的,但是赛场上并不会 dp[i]的定义 ...

  3. HDU 5794 - A Simple Chess

    HDU 5794 - A Simple Chess题意: 马(象棋)初始位置在(1,1), 现在要走到(n,m), 问有几种走法 棋盘上有r个障碍物, 该位置不能走, 并规定只能走右下方 数据范围: ...

  4. HDU 5794 A Simple Chess dp+Lucas

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 A Simple Chess Time Limit: 2000/1000 MS (Java/O ...

  5. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

  6. HDU 5794 A Simple Chess(杨辉三角+容斥原理+Lucas定理)

    题目链接 A Simple Chess 打表发现这其实是一个杨辉三角…… 然后发现很多格子上方案数都是0 对于那写可能可以到达的点(先不考虑障碍点),我们先叫做有效的点 对于那些障碍,如果不在有效点上 ...

  7. HDU 5794 A Simple Chess ——(Lucas + 容斥)

    网上找了很多人的博客,都看不太懂,还是大力学长的方法好. 要说明的一点是,因为是比较大的数字的组合数再加上mod比较小,因此用Lucas定理求组合数. 代码如下(有注释): #include < ...

  8. HDU 5794 A Simple Chess (Lucas + dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 多校这题转化一下模型跟cf560E基本一样,可以先做cf上的这个题. 题目让你求一个棋子开始在( ...

  9. HDU 5794 A Simple Chess Lucas定理+dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 题意概述: 给出一个N*M的网格.网格上有一些点是障碍,不能经过.行走的方式是向右下角跳马步.求 ...

随机推荐

  1. select空间提交form表单传递参数

    如下, 到了 <form name="modelForm" action="/portal/defectinfo/toDefectPage?projectname= ...

  2. lvs 会话保持(转发)

    lvs & keepalived的tcp 长连接的问题解决办法 虽然应用keepalived搞定了后端服务负载均衡和高可用性问题,但是在具体应用的时候,还是要注意很多问题.很多应用都用tcp或 ...

  3. Github朝花夕拾

    删除fork的项目   下载指定revision的repository 通过git log查看提交历史,最好是GUI查看 然后执行命令git reset –hard <sha1> 同步到最 ...

  4. Xcode8注释有时会失效的解决方法

    1.苹果开发解决了xcode ghost,而且Xcode8也取消了三方插件的功能,所以注释有时会失效,解决办法终端运行命令:sudo /usr/libexec/xpccachectl  回车 +  输 ...

  5. SQL语句的优化

    1.创建索引 表中数据经常需要用的哪些字段数据进行过滤,则添加该字段的索引,索引相当如一本书的目录,能加快查询数据的速度:同时在新建索引的时候,将需要查询的列,在包含性 列中新增上去,能减少查询语句的 ...

  6. thinkphp 注册验证

    遇到用户注册等情况时,如果等用户输入所有信息,点击注册按钮提交后,再验证输入是否正确,体验很不好,而且很浪费用户的时间,增加注册成本,这里提供一个例子,演示了怎么使用ajax进行单步验证,使用thin ...

  7. 深耕教育行业,RealSeer联合黑晶科技发布“AR超级教室”

    近日,RealSeer开发者大赛见面会最后一站在北京举行,现场云集了不少AR创业者和开发者,各位大咖嘉宾都拿出干货与大家分享交流,公话未来AR行业发展趋势.现场RealMax联合黑晶科技发布了新品&q ...

  8. 在一个页面重复使用一个js函数的方法

    给每个拥有相同行为的问题DOM节点一个相同的class类,如question,同时给不同的问题一个不同的标识ID如 id="question1" id="question ...

  9. windows下9款一键快速搭建PHP本地运行环境的好工具(含php7.0环境)

    推荐几款一键快速搭建PHP本地运行环境的好工具(含php7.0及apache,nigix,mysql) 首推phpstudy2016和wampServer3.0.6     理由支持php7.0 目前 ...

  10. 浙江大学Pat 1036 题解

    1036. Boys vs Girls (25) This time you are asked to tell the difference between the lowest grade of ...